Suppr超能文献

识别用于区分癌症亚型的循环细胞外微小RNA的特征和规律

Identifying the Signatures and Rules of Circulating Extracellular MicroRNA for Distinguishing Cancer Subtypes.

作者信息

Yuan Fei, Li Zhandong, Chen Lei, Zeng Tao, Zhang Yu-Hang, Ding Shijian, Huang Tao, Cai Yu-Dong

机构信息

School of Life Sciences, Shanghai University, Shanghai, China.

Department of Science and Technology, Binzhou Medical University Hospital, Binzhou, China.

出版信息

Front Genet. 2021 Mar 9;12:651610. doi: 10.3389/fgene.2021.651610. eCollection 2021.

Abstract

Cancer is one of the most threatening diseases to humans. It can invade multiple significant organs, including lung, liver, stomach, pancreas, and even brain. The identification of cancer biomarkers is one of the most significant components of cancer studies as the foundation of clinical cancer diagnosis and related drug development. During the large-scale screening for cancer prevention and early diagnosis, obtaining cancer-related tissues is impossible. Thus, the identification of cancer-associated circulating biomarkers from liquid biopsy targeting has been proposed and has become the most important direction for research on clinical cancer diagnosis. Here, we analyzed pan-cancer extracellular microRNA profiles by using multiple machine-learning models. The extracellular microRNA profiles on 11 cancer types and non-cancer were first analyzed by Boruta to extract important microRNAs. Selected microRNAs were then evaluated by the Max-Relevance and Min-Redundancy feature selection method, resulting in a feature list, which were fed into the incremental feature selection method to identify candidate circulating extracellular microRNA for cancer recognition and classification. A series of quantitative classification rules was also established for such cancer classification, thereby providing a solid research foundation for further biomarker exploration and functional analyses of tumorigenesis at the level of circulating extracellular microRNA.

摘要

癌症是对人类最具威胁的疾病之一。它可侵袭多个重要器官,包括肺、肝、胃、胰腺,甚至大脑。癌症生物标志物的识别是癌症研究中最重要的组成部分之一,是临床癌症诊断及相关药物研发的基础。在大规模癌症预防和早期诊断筛查过程中,获取癌症相关组织是不可能的。因此,从液体活检靶向中识别癌症相关循环生物标志物的方法被提出,并已成为临床癌症诊断研究的最重要方向。在此,我们使用多种机器学习模型分析了泛癌细胞外微小RNA谱。首先通过Boruta算法分析了11种癌症类型和非癌症样本的细胞外微小RNA谱,以提取重要的微小RNA。然后通过最大相关最小冗余特征选择方法对所选微小RNA进行评估,得到一个特征列表,将其输入增量特征选择方法中,以识别用于癌症识别和分类的候选循环细胞外微小RNA。还针对此类癌症分类建立了一系列定量分类规则,从而为在循环细胞外微小RNA水平上进一步探索生物标志物和肿瘤发生的功能分析提供了坚实的研究基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/7985347/f15c20d28f92/fgene-12-651610-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验