Suppr超能文献

运用机器学习方法识别神经退行性疾病的关键微小RNA特征

Identifying Key MicroRNA Signatures for Neurodegenerative Diseases With Machine Learning Methods.

作者信息

Li ZhanDong, Guo Wei, Ding ShiJian, Chen Lei, Feng KaiYan, Huang Tao, Cai Yu-Dong

机构信息

College of Food Engineering, Jilin Engineering Normal University, Changchun, China.

Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China.

出版信息

Front Genet. 2022 Apr 21;13:880997. doi: 10.3389/fgene.2022.880997. eCollection 2022.

Abstract

Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease, and many other disease types, cause cognitive dysfunctions such as dementia via the progressive loss of structure or function of the body's neurons. However, the etiology of these diseases remains unknown, and diagnosing less common cognitive disorders such as vascular dementia (VaD) remains a challenge. In this work, we developed a machine-leaning-based technique to distinguish between normal control (NC), AD, VaD, dementia with Lewy bodies, and mild cognitive impairment at the microRNA (miRNA) expression level. First, unnecessary miRNA features in the miRNA expression profiles were removed using the Boruta feature selection method, and the retained feature sets were sorted using minimum redundancy maximum relevance and Monte Carlo feature selection to provide two ranking feature lists. The incremental feature selection method was used to construct a series of feature subsets from these feature lists, and the random forest and PART classifiers were trained on the sample data consisting of these feature subsets. On the basis of the model performance of these classifiers with different number of features, the best feature subsets and classifiers were identified, and the classification rules were retrieved from the optimal PART classifiers. Finally, the link between candidate miRNA features, including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649, and neurodegenerative diseases was confirmed using recently published research, laying the groundwork for more research on miRNAs in neurodegenerative diseases for the diagnosis of cognitive impairment and the understanding of potential pathogenic mechanisms.

摘要

神经退行性疾病,包括阿尔茨海默病(AD)、帕金森病和许多其他疾病类型,通过人体神经元结构或功能的逐渐丧失导致认知功能障碍,如痴呆。然而,这些疾病的病因仍然未知,诊断诸如血管性痴呆(VaD)等不太常见的认知障碍仍然是一项挑战。在这项工作中,我们开发了一种基于机器学习的技术,用于在微小RNA(miRNA)表达水平上区分正常对照(NC)、AD、VaD、路易体痴呆和轻度认知障碍。首先,使用Boruta特征选择方法去除miRNA表达谱中不必要的miRNA特征,并使用最小冗余最大相关性和蒙特卡罗特征选择对保留的特征集进行排序,以提供两个排名特征列表。使用增量特征选择方法从这些特征列表中构建一系列特征子集,并在由这些特征子集组成的样本数据上训练随机森林和PART分类器。根据这些具有不同特征数量的分类器的模型性能,确定最佳特征子集和分类器,并从最优PART分类器中检索分类规则。最后,利用最近发表的研究证实了包括hsa-miR-3184-5p、has-miR-6088和has-miR-4649在内的候选miRNA特征与神经退行性疾病之间的联系,为进一步研究miRNA在神经退行性疾病中诊断认知障碍和理解潜在致病机制奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aefc/9068882/0447d6384290/fgene-13-880997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验