Suppr超能文献

通过机器学习方法检测儿童癌症放疗反应中的血液甲基化特征。

Detecting Blood Methylation Signatures in Response to Childhood Cancer Radiotherapy via Machine Learning Methods.

作者信息

Li Zhandong, Guo Wei, Ding Shijian, Feng Kaiyan, Lu Lin, Huang Tao, Cai Yudong

机构信息

College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, China.

Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China.

出版信息

Biology (Basel). 2022 Apr 15;11(4):607. doi: 10.3390/biology11040607.

Abstract

Radiotherapy is a helpful treatment for cancer, but it can also potentially cause changes in many molecules, resulting in adverse effects. Among these changes, the occurrence of abnormal DNA methylation patterns has alarmed scientists. To explore the influence of region-specific radiotherapy on blood DNA methylation, we designed a computational workflow by using machine learning methods that can identify crucial methylation alterations related to treatment exposure. Irrelevant methylation features from the DNA methylation profiles of 2052 childhood cancer survivors were excluded via the Boruta method, and the remaining features were ranked using the minimum redundancy maximum relevance method to generate feature lists. These feature lists were then fed into the incremental feature selection method, which uses a combination of deep forest, k-nearest neighbor, random forest, and decision tree to find the most important methylation signatures and build the best classifiers and classification rules. Several methylation signatures and rules have been discovered and confirmed, allowing for a better understanding of methylation patterns in response to different treatment exposures.

摘要

放射疗法是一种治疗癌症的有效方法,但它也可能潜在地导致许多分子发生变化,从而产生不良反应。在这些变化中,异常DNA甲基化模式的出现引起了科学家们的警觉。为了探究区域特异性放射疗法对血液DNA甲基化的影响,我们设计了一种计算工作流程,通过使用机器学习方法来识别与治疗暴露相关的关键甲基化改变。通过Boruta方法排除了2052名儿童癌症幸存者DNA甲基化谱中的无关甲基化特征,并用最小冗余最大相关性方法对其余特征进行排序以生成特征列表。然后将这些特征列表输入到增量特征选择方法中,该方法结合了深度森林、k近邻、随机森林和决策树来找到最重要的甲基化特征,并构建最佳分类器和分类规则。已经发现并证实了几种甲基化特征和规则,这有助于更好地理解不同治疗暴露下的甲基化模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99be/9030135/804e39651cad/biology-11-00607-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验