Suppr超能文献

用于脑龄分类与预测中神经影像预处理的贝叶斯优化

Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction.

作者信息

Lancaster Jenessa, Lorenz Romy, Leech Rob, Cole James H

机构信息

Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom.

Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

出版信息

Front Aging Neurosci. 2018 Feb 12;10:28. doi: 10.3389/fnagi.2018.00028. eCollection 2018.

Abstract

Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on = 2003 healthy individuals (aged 16-90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, = 648, aged 18-88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias.

摘要

基于神经影像学的年龄预测通过机器学习被提议作为脑老化的生物标志物,与认知表现、健康结果和神经退行性疾病的进展相关。然而,即使是领先的年龄预测算法也存在测量误差,这促使人们努力改进实验流程。T1加权磁共振成像(MRI)通常用于年龄预测,这些扫描的预处理包括归一化到一个通用模板并重新采样到一个通用体素大小,随后进行空间平滑处理。重新采样参数通常是任意选择的。在这里,我们试图通过使用贝叶斯优化来优化重新采样参数,以提高脑年龄预测的准确性。利用2003名健康个体(年龄在16 - 90岁之间)的数据,我们训练支持向量机来(i)区分年轻(<22岁)和年老(>50岁)的大脑(分类)以及(ii)预测实际年龄(回归)。我们还评估了年龄回归模型对一个独立数据集(CamCAN,n = 648,年龄在18 - 88岁之间)的泛化能力。贝叶斯优化被用于为每个任务确定最佳体素大小和平滑核大小。这个过程自适应地对参数空间进行采样,以评估一系列可能参数下的准确性,使用独立的子样本迭代评估不同的参数组合以得出最优值。在区分年轻和年老大脑时,分类准确率达到了88.1%,(最佳体素大小 = 11.5毫米,平滑核 = 2.3毫米)。对于预测实际年龄,平均绝对误差(MAE)为5.08岁,(最佳体素大小 = 3.73毫米,平滑核 = 3.68毫米)。这与分别使用默认值1.5毫米和4毫米时的性能进行了比较,结果MAE = 5.48岁,尽管7.3%的改进在统计学上并不显著。在评估泛化能力时,将整个贝叶斯优化框架应用于新数据集时取得了最佳性能,优于为初始训练数据集优化的参数。我们的研究概述了一个原理证明,即用于脑年龄预测的神经影像学模型可以使用贝叶斯优化来推导特定病例的预处理参数。我们的结果表明,在特定背景下进行优化时会选择不同的预处理参数。这可能促使在实验过程中的许多不同点使用优化技术,这可能会提高统计敏感性并减少实验者主导的偏差机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b585/5816033/d5c51fe5aa6c/fnagi-10-00028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验