Suppr超能文献

协调全球 COVID-19 传播和感染病死率的估计值:系统评价概述。

Reconciling estimates of global spread and infection fatality rates of COVID-19: An overview of systematic evaluations.

机构信息

Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA.

出版信息

Eur J Clin Invest. 2021 May;51(5):e13554. doi: 10.1111/eci.13554. Epub 2021 Apr 9.

Abstract

BACKGROUND

Estimates of community spread and infection fatality rate (IFR) of COVID-19 have varied across studies. Efforts to synthesize the evidence reach seemingly discrepant conclusions.

METHODS

Systematic evaluations of seroprevalence studies that had no restrictions based on country and which estimated either total number of people infected and/or aggregate IFRs were identified. Information was extracted and compared on eligibility criteria, searches, amount of evidence included, corrections/adjustments of seroprevalence and death counts, quantitative syntheses and handling of heterogeneity, main estimates and global representativeness.

RESULTS

Six systematic evaluations were eligible. Each combined data from 10 to 338 studies (9-50 countries), because of different eligibility criteria. Two evaluations had some overt flaws in data, violations of stated eligibility criteria and biased eligibility criteria (eg excluding studies with few deaths) that consistently inflated IFR estimates. Perusal of quantitative synthesis methods also exhibited several challenges and biases. Global representativeness was low with 78%-100% of the evidence coming from Europe or the Americas; the two most problematic evaluations considered only one study from other continents. Allowing for these caveats, four evaluations largely agreed in their main final estimates for global spread of the pandemic and the other two evaluations would also agree after correcting overt flaws and biases.

CONCLUSIONS

All systematic evaluations of seroprevalence data converge that SARS-CoV-2 infection is widely spread globally. Acknowledging residual uncertainties, the available evidence suggests average global IFR of ~0.15% and ~1.5-2.0 billion infections by February 2021 with substantial differences in IFR and in infection spread across continents, countries and locations.

摘要

背景

COVID-19 的社区传播和感染病死率(IFR)估计在不同的研究中有所不同。综合证据的努力得出了看似不一致的结论。

方法

系统评估了没有基于国家限制且估计总感染人数和/或总 IFR 的血清流行率研究。提取并比较了入选标准、搜索、纳入证据的数量、血清流行率和死亡人数的校正/调整、定量综合以及异质性处理、主要估计和全球代表性。

结果

有 6 项系统评估符合入选标准。由于不同的入选标准,每个评估都结合了 10 到 338 项研究的数据(9 到 50 个国家)。其中两项评估在数据上存在一些明显的缺陷,违反了既定的入选标准和有偏差的入选标准(例如排除了死亡人数较少的研究),这一致地夸大了 IFR 的估计值。定量综合方法的审查也显示出了一些挑战和偏差。全球代表性很低,78%-100%的证据来自欧洲或美洲;两个最有问题的评估只考虑了来自其他大陆的一项研究。考虑到这些注意事项,四项评估在其主要最终估计值上基本一致,即全球大流行的传播情况,另外两项评估在纠正明显的缺陷和偏差后也会达成一致。

结论

所有对血清流行率数据的系统评估都表明,SARS-CoV-2 感染在全球范围内广泛传播。承认仍存在不确定性,现有证据表明,全球平均 IFR 约为 0.15%,到 2021 年 2 月感染人数约为 15-20 亿,IFR 和感染在各大洲、各国和各地区的传播存在很大差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ac/8250317/1d43f442b236/ECI-51-e13554-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验