Division of Biostatistics & Epidemiology, School of Public Health, University of California, Berkeley, CA.
Institute for Disease Modeling, Bellevue, WA.
J Acquir Immune Defic Syndr. 2021 Aug 1;87(4):1024-1031. doi: 10.1097/QAI.0000000000002684.
The SEARCH study provided community-based HIV and multidisease testing and antiretroviral therapy (ART) to 32 communities in East Africa and reported no statistically significant difference in 3-year HIV incidence. We used mathematical modeling to estimate the effect of control arm viral suppression and community mixing on SEARCH trial outcomes.
Uganda and Kenya.
Using the individual-based HIV modeling software EMOD-HIV, we configured a new model of SEARCH communities. The model was parameterized using demographic, HIV prevalence, male circumcision, and viral suppression data and calibrated to HIV prevalence, ART coverage, and population size. Using assumptions about ART scale-up in the control arm, degree of community mixing, and effect of baseline testing, we estimated comparative HIV incidence under multiple scenarios.
Before the trial results, we predicted that SEARCH would report a 4%-40% reduction between arms, depending on control arm ART linkage rates and community mixing. With universal baseline testing followed by rapidly expanded ART eligibility and uptake, modeled effect sizes were smaller than the study was powered to detect. Using interim viral suppression data, we estimated 3-year cumulative incidence would have been reduced by up to 27% in the control arm and 43% in the intervention arm compared with a counterfactual without universal baseline testing.
Our model suggests that the active control arm substantially reduced expected effect size and power of the SEARCH study. However, compared with a counterfactual "true control" without increased ART linkage because of baseline testing, SEARCH reduced HIV incidence by up to 43%.
SEARCH 研究在东非的 32 个社区提供了基于社区的 HIV 和多种疾病检测以及抗逆转录病毒治疗(ART),但在 3 年内 HIV 发病率方面并未发现具有统计学意义的差异。我们使用数学模型来估计对照臂病毒抑制和社区混合对 SEARCH 试验结果的影响。
乌干达和肯尼亚。
使用基于个体的 HIV 建模软件 EMOD-HIV,我们为 SEARCH 社区配置了一个新模型。该模型使用人口统计学、HIV 流行率、男性包皮环切术和病毒抑制数据进行参数化,并根据 HIV 流行率、ART 覆盖率和人口规模进行校准。根据对照臂中 ART 扩展的假设、社区混合的程度以及基线检测的效果,我们在多种情况下估计了 HIV 发病率的比较。
在试验结果公布之前,我们预测 SEARCH 将报告 4%-40%的减少,这取决于对照臂 ART 关联率和社区混合程度。通过普遍进行基线检测,随后快速扩大 ART 的资格和使用率,模型的效果大小比研究的检测能力小。利用中期的病毒抑制数据,我们估计对照臂 3 年累计发病率将减少多达 27%,干预臂将减少多达 43%,与没有普遍基线检测的反事实相比。
我们的模型表明,主动对照臂大大降低了 SEARCH 研究的预期效果大小和效能。然而,与没有因基线检测而增加 ART 关联的“真正对照”相比,SEARCH 降低了高达 43%的 HIV 发病率。