Suppr超能文献

基于地球观测数据的建筑密度、高度和类型,利用人口普查分解和自下而上的估计方法对德国进行网格化人口制图。

Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates.

作者信息

Schug Franz, Frantz David, van der Linden Sebastian, Hostert Patrick

机构信息

Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany.

Integrated Research Institute on Transformations of Human-Environment Systems, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

PLoS One. 2021 Mar 26;16(3):e0249044. doi: 10.1371/journal.pone.0249044. eCollection 2021.

Abstract

Gridded population data is widely used to map fine scale population patterns and dynamics to understand associated human-environmental processes for global change research, disaster risk assessment and other domains. This study mapped gridded population across Germany using weighting layers from building density, building height (both from previous studies) and building type datasets, all created from freely available, temporally and globally consistent Copernicus Sentinel-1 and Sentinel-2 data. We first produced and validated a nation-wide dataset of predominant residential and non-residential building types. We then examined the impact of different weighting layers from density, type and height on top-down dasymetric mapping quality across scales. We finally performed a nation-wide bottom-up population estimate based on the three datasets. We found that integrating building types into dasymetric mapping is helpful at fine scale, as population is not redistributed to non-residential areas. Building density improved the overall quality of population estimates at all scales compared to using a binary building layer. Most importantly, we found that the combined use of density and height, i.e. volume, considerably increased mapping quality in general and with regard to regional discrepancy by largely eliminating systematic underestimation in dense agglomerations and overestimation in rural areas. We also found that building density, type and volume, together with living floor area per capita, are suitable to produce accurate large-area bottom-up population estimates.

摘要

网格化人口数据被广泛用于绘制精细尺度的人口格局和动态,以了解与全球变化研究、灾害风险评估及其他领域相关的人类-环境过程。本研究利用建筑密度、建筑高度(均来自先前研究)和建筑类型数据集的加权图层,绘制了德国的网格化人口图,所有数据集均由免费获取的、时间和全球一致的哥白尼哨兵-1和哨兵-2数据创建。我们首先制作并验证了全国范围内主要住宅和非住宅建筑类型的数据集。然后,我们研究了密度、类型和高度的不同加权图层对不同尺度自上而下的分区统计制图质量的影响。最后,我们基于这三个数据集进行了全国范围内的自下而上的人口估计。我们发现,将建筑类型纳入分区统计制图在精细尺度上是有帮助的,因为人口不会重新分配到非居住区域。与使用二元建筑图层相比,建筑密度在所有尺度上都提高了人口估计的整体质量。最重要的是,我们发现密度和高度的联合使用,即体积,总体上大大提高了制图质量,并且在区域差异方面,通过在很大程度上消除密集集聚区的系统性低估和农村地区的高估,显著提高了制图质量。我们还发现,建筑密度、类型和体积,以及人均居住面积,适合用于生成准确的大面积自下而上的人口估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9274/7996978/beefe254e456/pone.0249044.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验