Watson C Scott, Elliott John R
School of Geography and water@leeds, University of Leeds, Leeds , LS2 9JT, UK.
School of Earth and Environment, COMET, University of Leeds, Leeds , LS2 9JT, UK.
Sci Rep. 2025 Aug 15;15(1):29913. doi: 10.1038/s41598-025-15929-2.
Understanding the 3D evolution of urban environments at high resolution through space and time is crucial for targeting sustainable development and enhancing resilience to hazards but usually requires expensive commercial satellite or aerial imagery. This leads to data scarcity and analytical biases in countries without access to these capabilities. Here we use high (1.5 m) resolution digital elevation models (DEMs) derived from satellite imagery to measure the vertical component of three cities in the Global South (Nairobi, Kathmandu and Quito), which we evaluate against published datasets of modelled heights. Building heights could be determined to < 1 m mean absolute error (MAE) using the DEMs, and 2.2-7.0 m MAE using a deep learning model trained to predict heights using high-resolution satellite imagery. Google's Open Buildings 2.5D Temporal Dataset further improved on our deep learning models for two of the three cities, although tended to overestimate building heights. Constraining the building-scale vertical dimension of urban growth creates new opportunities to quantify population distributions, assess natural hazard exposure and vulnerabilities, and evaluate material consumption for sustainable development. Deep learning derived building heights begin to address global inequalities in data availability but should be evaluated locally alongside reference data to determine biases.
通过空间和时间以高分辨率了解城市环境的三维演变对于实现可持续发展目标以及增强对灾害的抵御能力至关重要,但这通常需要昂贵的商业卫星或航空图像。这导致在无法获取这些数据的国家出现数据稀缺和分析偏差的问题。在此,我们使用从卫星图像中获取的高分辨率(1.5米)数字高程模型(DEM)来测量全球南方三个城市(内罗毕、加德满都和基多)的垂直分量,并与已发表的建模高度数据集进行对比评估。利用DEM可以将建筑物高度的平均绝对误差(MAE)确定在<1米,而使用经过训练以高分辨率卫星图像预测高度的深度学习模型时,MAE为2.2 - 7.0米。谷歌的开放建筑2.5D时间数据集在三个城市中的两个城市上进一步改进了我们的深度学习模型,不过该数据集往往会高估建筑物高度。限制城市增长的建筑尺度垂直维度为量化人口分布、评估自然灾害暴露和脆弱性以及评估可持续发展的物质消耗创造了新机会。深度学习得出的建筑物高度开始解决数据可用性方面的全球不平等问题,但应与参考数据一起在当地进行评估以确定偏差。