Schiavon Dario, Chlipala Mikolaj, Perlin Piotr
Opt Express. 2021 Feb 1;29(3):3001-3010. doi: 10.1364/OE.411449.
Most optoelectronic devices share the same basic epitaxial structure - a stack of quantum wells (QWs) sandwiched between p- and n-doped layers. In nitride semiconductors, where holes have 20-times lower mobility than electrons, the holes are able to populate only the topmost 1-2 QWs. The inability to distribute the holes in a large-enough number of QWs is a cause of high Auger recombination in nitride LEDs. Lateral carrier injection is an alternative design, in which the doped regions are situated at the sides of the QW stack and the carriers diffuse horizontally into the QWs. Given that the carriers are injected into all available QWs, it finally makes sense to grow structures with a large number of QWs. We report the results of our computer simulations, which explore the advantages of LCI-based LEDs in terms of energy efficiency.
大多数光电器件都具有相同的基本外延结构——夹在p型和n型掺杂层之间的量子阱(QW)堆栈。在氮化物半导体中,空穴的迁移率比电子低20倍,空穴只能填充最顶层的1-2个量子阱。无法在足够数量的量子阱中分布空穴是氮化物发光二极管中高俄歇复合的一个原因。横向载流子注入是一种替代设计,其中掺杂区域位于量子阱堆栈的侧面,载流子水平扩散到量子阱中。鉴于载流子被注入到所有可用的量子阱中,因此生长具有大量量子阱的结构最终是有意义的。我们报告了计算机模拟的结果,这些模拟探讨了基于横向载流子注入(LCI)的发光二极管在能源效率方面的优势。