Suppr超能文献

随机抽样效应有利于人工而非数字接触者追踪。

Stochastic sampling effects favor manual over digital contact tracing.

机构信息

Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze, Parma, Italy.

INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parco Area delle Scienze, Parma, Italy.

出版信息

Nat Commun. 2021 Mar 26;12(1):1919. doi: 10.1038/s41467-021-22082-7.

Abstract

Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual reconstruction of contacts based on interviews and a digital (app-based) privacy-preserving contact tracing. We compare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion within the activity-driven model, a general empirically validated framework for network dynamics. We show that, even for equal probability of tracing a contact, manual tracing robustly performs better than the digital protocol, also taking into account the intrinsic delay and limited scalability of the manual procedure. This result is explained in terms of the stochastic sampling occurring during the case-by-case manual reconstruction of contacts, contrasted with the intrinsically prearranged nature of digital tracing, determined by the decision to adopt the app or not by each individual. The better performance of manual tracing is enhanced by heterogeneity in agent behavior: superspreaders not adopting the app are completely invisible to digital contact tracing, while they can be easily traced manually, due to their multiple contacts. We show that this intrinsic difference makes the manual procedure dominant in realistic hybrid protocols.

摘要

对症状患者进行隔离,追踪并检测其无症状接触者,是缓解当前 COVID-19 大流行的基本策略。打破传播链依赖于两种互补的策略:基于访谈的手动接触者重建,以及基于数字(应用程序)保护隐私的接触者追踪。我们使用针对 SARS-CoV-2 在活动驱动模型内扩散量身定制的模型参数来比较它们的有效性,该模型是一个经过经验验证的网络动力学通用实证框架。我们表明,即使手动追踪接触者的概率相等,手动追踪也比数字协议表现更稳健,这也考虑到手动程序的固有延迟和有限的可扩展性。这一结果可以通过逐个案例的接触者手动重建过程中的随机抽样来解释,而数字追踪的本质上是预先安排好的,这取决于每个人是否决定使用该应用程序。由于超级传播者不使用该应用程序,因此他们的多次接触使得手动追踪可以轻松追踪到他们,这增强了手动追踪的更好性能。我们表明,这种内在差异使得手动程序在现实混合协议中占据主导地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9335/7997996/f0913528b5c4/41467_2021_22082_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验