Suppr超能文献

使用genra-py进行广义的类推预测。

Generalized Read-Across prediction using genra-py.

作者信息

Shah Imran, Tate Tia, Patlewicz Grace

机构信息

Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA.

出版信息

Bioinformatics. 2021 Oct 11;37(19):3380-3381. doi: 10.1093/bioinformatics/btab210.

Abstract

MOTIVATION

Generalized Read-Across (GenRA) is a data-driven approach to estimate physico-chemical, biological or eco-toxicological properties of chemicals by inference from analogues. GenRA attempts to mimic a human expert's manual read-across reasoning for filling data gaps about new chemicals from known chemicals with an interpretable and automated approach based on nearest-neighbors. A key objective of GenRA is to systematically explore different choices of input data selection and neighborhood definition to objectively evaluate predictive performance of automated read-across estimates of chemical properties.

RESULTS

We have implemented genra-py as a python package that can be freely used for chemical safety analysis and risk assessment applications. Automated read-across prediction in genra-py conforms to the scikit-learn machine learning library's estimator design pattern, making it easy to use and integrate in computational pipelines. We demonstrate the data-driven application of genra-py to address two key human health risk assessment problems namely: hazard identification and point of departure estimation.

AVAILABILITY AND IMPLEMENTATION

The package is available from github.com/i-shah/genra-py.

摘要

动机

广义类推法(GenRA)是一种数据驱动的方法,通过从类似物进行推断来估计化学品的物理化学、生物学或生态毒理学性质。GenRA试图模仿人类专家的手动类推推理,以一种基于最近邻的可解释且自动化的方法,从已知化学品中填补新化学品的数据空白。GenRA的一个关键目标是系统地探索输入数据选择和邻域定义的不同选择,以客观评估化学品性质自动类推估计的预测性能。

结果

我们已将genra-py实现为一个Python包,可免费用于化学安全分析和风险评估应用。genra-py中的自动类推预测符合scikit-learn机器学习库的估计器设计模式,使其易于使用并集成到计算管道中。我们展示了genra-py的数据驱动应用,以解决两个关键的人类健康风险评估问题,即:危害识别和出发剂量估计。

可用性和实现方式

该包可从github.com/i-shah/genra-py获取。

相似文献

1
Generalized Read-Across prediction using genra-py.使用genra-py进行广义的类推预测。
Bioinformatics. 2021 Oct 11;37(19):3380-3381. doi: 10.1093/bioinformatics/btab210.
6
Quantitative prediction of repeat dose toxicity values using GenRA.利用 GenRA 对重复剂量毒性值进行定量预测。
Regul Toxicol Pharmacol. 2019 Dec;109:104480. doi: 10.1016/j.yrtph.2019.104480. Epub 2019 Sep 21.

引用本文的文献

5
Systematic Approaches for the Encoding of Chemical Groups: A Case Study.化学基团编码的系统方法:一个案例研究
Chem Res Toxicol. 2024 Apr 15;37(4):600-619. doi: 10.1021/acs.chemrestox.3c00411. Epub 2024 Mar 18.
10

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验