School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, China.
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
Int J Numer Method Biomed Eng. 2021 Jun;37(6):e3460. doi: 10.1002/cnm.3460. Epub 2021 Apr 18.
Myopia detection is significant for preventing irreversible visual impairment and diagnosing myopic retinopathy. To improve the detection efficiency and accuracy, a Myopia Detection Network (MDNet) that combines the advantages of dense connection and Residual Squeeze-and-Excitation attention is proposed in this paper to automatically detect myopia in Optos fundus images. First, an automatic optic disc recognition method is applied to extract the Regions of Interest and remove the noise disturbances; then, data augmentation techniques are implemented to enlarge the data set and prevent overfitting; moreover, an MDNet composed of Attention Dense blocks is constructed to detect myopia in Optos fundus images. The results show that the Mean Absolute Error of the Spherical Equivalent detected by this network can reach 1.1150 D (diopter), which verifies the feasibility and applicability of this method for the automatic detection of myopia in Optos fundus images.
近视检测对于预防不可逆转的视力损害和诊断近视性视网膜病变具有重要意义。为了提高检测效率和准确性,本文提出了一种结合密集连接和残差挤压激励注意力优势的近视检测网络(MDNet),用于自动检测 Optos 眼底图像中的近视。首先,应用自动视盘识别方法提取感兴趣区域并去除噪声干扰;然后,采用数据增强技术扩充数据集,防止过拟合;此外,构建了由注意力密集块组成的 MDNet,用于检测 Optos 眼底图像中的近视。结果表明,该网络检测的等效球镜的平均绝对误差可达 1.1150D(屈光度),验证了该方法在 Optos 眼底图像中自动检测近视的可行性和适用性。