Zhang Juzhao, Yu Tao, Zhang Mengjia, Zhang Yuzhu, Ma Yingyan, Xue Wenwen, Zhou Hao, Lin Senlin, Zou Haidong, Xu Xian
Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China.
National Clinical Research Center for Eye Diseases, Shanghai, China.
BMJ Open Ophthalmol. 2025 Aug 28;10(1):e002073. doi: 10.1136/bmjophth-2024-002073.
This study aims to detect characteristic fundus changes in pathological myopia using deep learning (DL)-based analysis of ultra-widefield (UWF) fundus imaging.
Following the exclusion of low-quality images, this cross-sectional study used 1105 UWF images from 543 patients with high myopia to develop the model, along with 293 images from 150 patients with high myopia for external testing. All images were retrospectively collected from patients with high myopia at Shanghai General Hospital and Shanghai Eye Diseases Prevention and Treatment Center between 2018 and 2024. We trained a DL model based on an ophthalmology foundational model to detect myopic maculopathy (MM) and posterior staphyloma (PS).
The proposed RETFound-enhanced model demonstrated robust performance. For five-category classification of MM, it achieved 65.4% accuracy and an F1 score of 0.648, outperforming other methods. In three-category MM classification, it achieved 79.4% accuracy and an F1 score of 0.793. For PS detection, the model reached 84.1% accuracy, an F1 score of 0.814 and an area under the receiver operating characteristic curve (AUROC) of 0.886, highlighting its effectiveness as a screening tool. External validation showed consistent performance, with 64.4% accuracy for five-category MM classification, 79.8% accuracy for three-category classification and 81.2% accuracy for PS, confirming robustness across cohorts.
This study presents an effective diagnostic model for pathological myopia using UWF fundus imaging and a foundation model. The integration of DL with non-mydriatic UWF fundus imaging demonstrates promising potential for applications in primary healthcare, particularly in underserved areas, enabling accessible screening for high myopia-related fundus changes.
本研究旨在通过基于深度学习(DL)的超广角(UWF)眼底成像分析,检测病理性近视的特征性眼底变化。
在排除低质量图像后,这项横断面研究使用了来自543例高度近视患者的1105张UWF图像来建立模型,并使用来自150例高度近视患者的293张图像进行外部测试。所有图像均回顾性收集自2018年至2024年期间上海交通大学医学院附属新华医院和上海市眼病防治中心的高度近视患者。我们基于眼科基础模型训练了一个DL模型,以检测近视性黄斑病变(MM)和后巩膜葡萄肿(PS)。
所提出的RETFound增强模型表现出强大的性能。对于MM的五类分类,其准确率达到65.4%,F1分数为0.648,优于其他方法。在MM的三类分类中,其准确率达到79.4%,F1分数为0.793。对于PS检测,该模型的准确率达到84.1%,F1分数为0.814,受试者操作特征曲线下面积(AUROC)为0.886,突出了其作为筛查工具的有效性。外部验证显示性能一致,五类MM分类的准确率为64.4%,三类分类的准确率为79.8%,PS的准确率为81.2%,证实了跨队列的稳健性。
本研究提出了一种使用UWF眼底成像和基础模型的病理性近视有效诊断模型。DL与免散瞳UWF眼底成像的整合在初级医疗保健中,特别是在服务不足的地区,显示出有前景的应用潜力,能够对高度近视相关的眼底变化进行可及的筛查。