Suppr超能文献

CT 影像学放射组学分析用于鉴别胃神经内分泌癌与胃腺癌。

Radiomics analysis of CT imaging for differentiating gastric neuroendocrine carcinomas from gastric adenocarcinomas.

机构信息

Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.

Advanced Application Team, GE Healthcare, Shanghai, 201203, China.

出版信息

Eur J Radiol. 2021 May;138:109662. doi: 10.1016/j.ejrad.2021.109662. Epub 2021 Mar 18.

Abstract

PURPOSE

To develop and evaluate a CT-based radiomics nomogram for differentiating gastric neuroendocrine carcinomas (NECs) from gastric adenocarcinomas (ADCs).

METHODS

CT images of 63 patients with gastric NECs were collected retrospectively, and 63 patients with gastric ADCs were selected as the control group. Univariate analysis was used to identify the significant factors of clinical characteristics and CT findings for differentiating gastric NECs from ADCs. Radiomics analysis was applied to CT images of unenhanced, arterial phase and venous phase, respectively. A radiomics nomogram incorporating the radiomics signature and the subjective CT findings was developed and its diagnostic ability was evaluated. The diagnostic performances of CT findings model, radiomics signature and radiomics nomogram were compared using DeLong test.

RESULTS

The tumor margin and lymph node (LN) metastasis were independent predictors for differentiating gastric NECs from ADCs. The radiomics signature based on venous phase presented superior AUC of 0.798 [95 % confidence interval (CI), 0.657-0.938] in validation cohort. The nomogram incorporated the radiomics signature, tumor margin and LN metastasis showed AUCs of 0.821 (95 %CI: 0.725-0.895) in the primary cohort and 0.809 (95 %CI: 0.649-0.918) in the validation cohort. Moreover, the radiomics nomogram showed good discrimination and calibration. The diagnostic performance of CT findings model was significantly lower than that of radiomics nomogram (p =  0.001) and radiomics signature (p = 0.025).

CONCLUSIONS

Radiomics analysis exhibited good performance in differentiating gastric NECs from ADCs, and the radiomics nomogram may have significant clinical implications on preoperative detection of gastric malignant tumors.

摘要

目的

开发并评估一种基于 CT 的放射组学列线图,用于区分胃神经内分泌癌(NEC)与胃腺癌(ADC)。

方法

回顾性收集 63 例胃 NEC 患者的 CT 图像,选取 63 例胃 ADC 患者作为对照组。采用单因素分析筛选出有助于区分胃 NEC 与 ADC 的临床特征和 CT 表现的显著因素。分别对平扫、动脉期和静脉期 CT 图像进行放射组学分析。构建纳入放射组学特征和主观 CT 表现的放射组学列线图,并评估其诊断效能。采用 DeLong 检验比较 CT 表现模型、放射组学特征和放射组学列线图的诊断效能。

结果

肿瘤边缘和淋巴结(LN)转移是区分胃 NEC 与 ADC 的独立预测因子。静脉期的放射组学特征具有较高的验证队列 AUC(0.798[95%置信区间:0.657-0.938])。纳入放射组学特征、肿瘤边缘和 LN 转移的列线图在原始队列中的 AUC 为 0.821(95%置信区间:0.725-0.895),在验证队列中的 AUC 为 0.809(95%置信区间:0.649-0.918)。此外,放射组学列线图具有良好的判别能力和校准度。CT 表现模型的诊断性能显著低于放射组学列线图(p=0.001)和放射组学特征(p=0.025)。

结论

放射组学分析在区分胃 NEC 与 ADC 方面具有良好的性能,放射组学列线图可能对术前检测胃恶性肿瘤具有重要的临床意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验