Suppr超能文献

将传统CT成像与放射组学相结合:一种用于胃神经内分泌癌和混合性腺神经内分泌癌术前诊断的新模型。

Synergizing traditional CT imaging with radiomics: a novel model for preoperative diagnosis of gastric neuroendocrine and mixed adenoneuroendocrine carcinoma.

作者信息

He Xiaoxiao, Yang Sujun, Ren Jialiang, Wang Ning, Li Min, You Yang, Li Yang, Li Yu, Shi Gaofeng, Yang Li

机构信息

Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

Department of Computed Tomography and Magnetic Resonance, Handan Central Hospital, Handan, Hebei, China.

出版信息

Front Oncol. 2024 Oct 23;14:1480466. doi: 10.3389/fonc.2024.1480466. eCollection 2024.

Abstract

OBJECTIVE

To develop diagnostic models for differentiating gastric neuroendocrine carcinoma (g-NEC) and gastric mixed adeno-neuroendocrine carcinoma (g-MANEC) from gastric adenocarcinoma (g-ADC) based on traditional contrast enhanced CT imaging features and radiomics features.

METHODS

We retrospectively analyzed 90 g-(MA)NEC (g-MANEC and g-NEC) patients matched 1:1 by T-stage with 90 g-ADC patients. Traditional CT features were analyzed using univariable and multivariable logistic regression. Tumor segmentation and radiomics features extraction were performed with Slicer and PyRadiomics. Feature selection was conducted through univariable analysis, correlation analysis, LASSO, and multivariable stepwise logistic. The combined model incorporated clinical and radiomics predictors. Diagnostic performance was assessed with ROC curves and DeLong's test. The models' diagnostic efficacy was further validated in subgroup of g-NEC vs. g-ADC and g-MANEC vs. g-ADC cases.

RESULTS

Tumor necrosis and lymph node metastasis were independent predictors for differentiating g-(MA)NEC from g-ADC ( < 0.05). The clinical model's AUC was 0.700 (training) and 0.667(validation). Five radiomics features were retained, with the radiomics model showing AUC of 0.809 (training) and 0.802 (validation). The combined model's AUCs were 0.853 (training) and 0.812 (validation), significantly outperforming the clinical model ( < 0.05). Subgroup analysis revealed that the combined model exhibited acceptable performance in differentiating g-NEC from g-ADC and g-MANEC from g-ADC, with AUC of 0.887 and 0.823 in the training cohort and 0.852 and 0.762 in the validation cohort.

CONCLUSION

A combined model based on traditional CT imaging and radiomic features provides a non-invasive and effective preoperative diagnostic method for differentiating g-(MA)NEC from g-ADC.

摘要

目的

基于传统对比增强CT成像特征和放射组学特征,开发用于鉴别胃神经内分泌癌(g-NEC)和胃混合性腺神经内分泌癌(g-MANEC)与胃腺癌(g-ADC)的诊断模型。

方法

我们回顾性分析了90例g-(MA)NEC(g-MANEC和g-NEC)患者,按T分期与90例g-ADC患者1:1匹配。使用单变量和多变量逻辑回归分析传统CT特征。利用Slicer和PyRadiomics进行肿瘤分割和放射组学特征提取。通过单变量分析、相关性分析、LASSO和多变量逐步逻辑回归进行特征选择。联合模型纳入了临床和放射组学预测因子。用ROC曲线和DeLong检验评估诊断性能。在g-NEC与g-ADC以及g-MANEC与g-ADC病例的亚组中进一步验证模型的诊断效能。

结果

肿瘤坏死和淋巴结转移是鉴别g-(MA)NEC与g-ADC的独立预测因子(<0.05)。临床模型的AUC在训练组为0.700,在验证组为0.667。保留了5个放射组学特征,放射组学模型的AUC在训练组为0.809,在验证组为0.802。联合模型的AUC在训练组为0.853,在验证组为0.812,显著优于临床模型(<0.05)。亚组分析显示,联合模型在鉴别g-NEC与g-ADC以及g-MANEC与g-ADC方面表现出可接受的性能,训练队列中的AUC分别为0.887和0.823,验证队列中的AUC分别为0.852和0.762。

结论

基于传统CT成像和放射组学特征的联合模型为鉴别g-(MA)NEC与g-ADC提供了一种非侵入性的有效术前诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88fe/11538776/cce7bcbc59f8/fonc-14-1480466-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验