Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany.
School of Biological Science, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA.
New Phytol. 2021 Aug;231(3):1040-1055. doi: 10.1111/nph.17376. Epub 2021 Jun 16.
Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.
土壤盐度是一个日益严重的全球性问题,它会阻碍植物生长和作物产量。植物的生产力取决于最佳的水分利用效率和光合作用能力,这需要通过气孔导度来平衡。目前还不清楚气孔行为是否以及如何导致植物对盐的敏感性或耐受性。本研究鉴定了在离子和渗透胁迫条件下,受盐敏感和耐盐植物调控的保卫细胞特异性信号网络,同时伴随着 NaCl 负荷的增加。我们用短期和长期盐胁迫来挑战在土壤中生长的拟南芥和盐芥植物,并监测了决定其功能的保卫细胞的全基因组表达和信号。拟南芥植物受到两种盐胁迫的影响,表现出气孔导度降低,而盐芥则没有明显的应激症状。保卫细胞的盐依赖性基因表达变化支持了盐生植物维持高钾/钠比的能力,并减弱了脱落酸(ABA)信号通路,而这种通路在 ABA 浓度下降的情况下,仍然保持着拟南芥的激活状态。我们的研究表明,盐胁迫甚至不同的耐盐性都表现在单个细胞水平上。盐生植物的保卫细胞比盐敏感植物的保卫细胞敏感性更低,这为操纵气孔行为和提高植物生产力提供了机会。