Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
Department of Immunology, University of Oslo, Oslo, Norway.
Trends Biotechnol. 2021 Dec;39(12):1263-1273. doi: 10.1016/j.tibtech.2021.03.003. Epub 2021 Mar 25.
For years, a discussion has persevered on the benefits and drawbacks of antibody discovery using animal immunization versus in vitro selection from non-animal-derived recombinant repertoires using display technologies. While it has been argued that using recombinant display libraries can reduce animal consumption, we hold that the number of animals used in immunization campaigns is dwarfed by the number sacrificed during preclinical studies. Thus, improving quality control of antibodies before entering in vivo studies will have a larger impact on animal consumption. Both animal immunization and recombinant repertoires present unique advantages for discovering antibodies that are fit for purpose. Furthermore, we anticipate that machine learning will play a significant role within discovery workflows, refining current antibody discovery practices.
多年来,人们一直在讨论使用动物免疫和使用展示技术从非动物来源的重组库中体外选择来发现抗体的优缺点。虽然有人认为使用重组展示文库可以减少动物的使用量,但我们认为在临床前研究中牺牲的动物数量远远超过免疫接种活动中使用的动物数量。因此,提高进入体内研究之前的抗体质量控制水平将对动物的使用量产生更大的影响。动物免疫和重组库都为发现适合特定用途的抗体提供了独特的优势。此外,我们预计机器学习将在发现工作流程中发挥重要作用,从而改进当前的抗体发现实践。