Suppr超能文献

使用水平集方法在数字高程模型中高效划分嵌套洼地层次结构以进行水文分析

Efficient Delineation of Nested Depression Hierarchy in Digital Elevation Models for Hydrological Analysis Using Level-Set Methods.

作者信息

Wu Qiusheng, Lane Charles R, Wang Lei, Vanderhoof Melanie K, Christensen Jay R, Liu Hongxing

机构信息

Department of Geography, Binghamton University, Binghamton, New York, USA.

Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA.

出版信息

J Am Water Resour Assoc. 2019 Apr 5;55(2):354-368. doi: 10.1111/1752-1688.12689.

Abstract

In terrain analysis and hydrological modeling, surface depressions (or sinks) in a digital elevation model (DEM) are commonly treated as artifacts and thus filled and removed to create a depressionless DEM. Various algorithms have been developed to identify and fill depressions in DEMs during the past decades. However, few studies have attempted to delineate and quantify the nested hierarchy of actual depressions, which can provide crucial information for characterizing surface hydrologic connectivity and simulating the fill-merge-spill hydrological process. In this paper, we present an innovative and efficient algorithm for delineating and quantifying nested depressions in DEMs using the level-set method based on graph theory. The proposed level-set method emulates water level decreasing from the spill point along the depression boundary to the lowest point at the bottom of a depression. By tracing the dynamic topological changes (i.e., depression splitting/merging) within a compound depression, the level-set method can construct topological graphs and derive geometric properties of the nested depressions. The experimental results of two fine-resolution Light Detection and Ranging-derived DEMs show that the raster-based level-set algorithm is much more efficient (~150 times faster) than the vector-based contour tree method. The proposed level-set algorithm has great potential for being applied to large-scale ecohydrological analysis and watershed modeling.

摘要

在地形分析和水文建模中,数字高程模型(DEM)中的地表洼地(或汇)通常被视为伪像,因此会被填充和去除以创建无洼地的DEM。在过去几十年中,已经开发了各种算法来识别和填充DEM中的洼地。然而,很少有研究尝试描绘和量化实际洼地的嵌套层次结构,这可以为表征地表水文连通性和模拟填充-合并-溢流水文过程提供关键信息。在本文中,我们提出了一种创新且高效的算法,用于使用基于图论的水平集方法来描绘和量化DEM中的嵌套洼地。所提出的水平集方法模拟水位从溢流点沿洼地边界下降到洼地底部最低点的过程。通过追踪复合洼地内的动态拓扑变化(即洼地分裂/合并),水平集方法可以构建拓扑图并推导嵌套洼地的几何属性。两个高分辨率光探测和测距衍生DEM的实验结果表明,基于栅格的水平集算法比基于矢量的等高线树方法效率高得多(快约150倍)。所提出的水平集算法在大规模生态水文分析和流域建模中具有很大的应用潜力。

相似文献

2
Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery.
Hydrol Earth Syst Sci. 2017;21(7):3579-3595. doi: 10.5194/hess-21-3579-2017.
3
Topographic hydro-conditioning to resolve surface depression storage and ponding in a fully distributed hydrologic model.
Adv Water Resour. 2023 Jun;176. doi: 10.1016/j.advwatres.2023.104449. Epub 2023 Apr 28.
4
Effects of digital elevation model data source on HSPF-based watershed-scale flow and water quality simulations.
Environ Sci Pollut Res Int. 2023 Mar;30(11):31935-31953. doi: 10.1007/s11356-022-24449-9. Epub 2022 Dec 2.
5
How does the choice of DEMs affect catchment hydrological modeling?
Sci Total Environ. 2023 Sep 20;892:164627. doi: 10.1016/j.scitotenv.2023.164627. Epub 2023 Jun 5.
6
A method for extracting drainage networks with heuristic information from digital elevation models.
Water Sci Technol. 2011;64(11):2316-24. doi: 10.2166/wst.2011.819.
7
HSPF-based watershed-scale water quality modeling and uncertainty analysis.
Environ Sci Pollut Res Int. 2019 Mar;26(9):8971-8991. doi: 10.1007/s11356-019-04390-0. Epub 2019 Feb 4.
8
A New DEM Generalization Method Based on Watershed and Tree Structure.
PLoS One. 2016 Aug 12;11(8):e0159798. doi: 10.1371/journal.pone.0159798. eCollection 2016.
10
Effect of DEM mesh size on AnnAGNPS simulation and slope correction.
Environ Monit Assess. 2011 Aug;179(1-4):267-77. doi: 10.1007/s10661-010-1734-7. Epub 2010 Oct 19.

引用本文的文献

1
Evaluation of the Usability of UAV LiDAR for Analysis of Karst (Doline) Terrain Morphology.
Sensors (Basel). 2024 Nov 1;24(21):7062. doi: 10.3390/s24217062.
2
Mapping global non-floodplain wetlands.
Earth Syst Sci Data. 2023 Jul 11;15(7):2927-2955. doi: 10.5194/essd-15-2927-2023.
3
Topographic hydro-conditioning to resolve surface depression storage and ponding in a fully distributed hydrologic model.
Adv Water Resour. 2023 Jun;176. doi: 10.1016/j.advwatres.2023.104449. Epub 2023 Apr 28.
6
Modeling Connectivity of Non-floodplain Wetlands: Insights, Approaches, and Recommendations.
J Am Water Resour Assoc. 2019 May 1;55(3):559-577. doi: 10.1111/1752-1688.12735.
8
Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions.
Water Resour Res. 2020 Jul 6;56(7):e2019WR026561. doi: 10.1029/2019WR026561.
9
Emergent dispersal networks in dynamic wetlandscapes.
Sci Rep. 2020 Sep 7;10(1):14696. doi: 10.1038/s41598-020-71739-8.
10
Non-floodplain Wetlands Affect Watershed Nutrient Dynamics: A Critical Review.
Environ Sci Technol. 2019 Jul 2;53(13):7203-7214. doi: 10.1021/acs.est.8b07270. Epub 2019 Jun 20.

本文引用的文献

2
Patterns and drivers for wetland connections in the Prairie Pothole Region, United States.
Wetl Ecol Manag. 2017;25(3):275-297. doi: 10.1007/s11273-016-9516-9. Epub 2016 Nov 19.
3
Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery.
Hydrol Earth Syst Sci. 2017;21(7):3579-3595. doi: 10.5194/hess-21-3579-2017.
5
Do geographically isolated wetlands influence landscape functions?
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):1978-86. doi: 10.1073/pnas.1512650113. Epub 2016 Feb 8.
6
scikit-image: image processing in Python.
PeerJ. 2014 Jun 19;2:e453. doi: 10.7717/peerj.453. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验