Suppr超能文献

基于面向稀有类别的超像素先验的双分辨率语义分割

: Dual-resolution Semantic Segmentation with Rare Class-Oriented Superpixel Prior.

作者信息

Yu Liangjiang, Fan Guoliang

机构信息

School of Electrical and Computer Engineering, Oklahoma State University, USA.

出版信息

Multimed Tools Appl. 2021 Jan;80(2):1687-1706. doi: 10.1007/s11042-020-09691-y. Epub 2020 Sep 9.

Abstract

Rare-class objects in natural scene images that are usually small and less frequent often convey more important information for scene understanding than the common ones. However, they are often overlooked in scene labeling studies due to two main reasons, low occurrence frequency and limited spatial coverage. Many methods have been proposed to enhance overall semantic labeling performance, but only a few consider rare-class objects. In this work, we present a deep semantic labeling framework with special consideration of rare classes via three techniques. First, a novel dual-resolution coarse-to-fine superpixel representation is developed, where fine and coarse superpixels are applied to rare classes and background areas respectively. This unique dual representation allows seamless incorporation of shape features into integrated global and local convolutional neural network (CNN) models. Second, shape information is directly involved during the CNN feature learning for both frequent and rare classes from the re-balanced training data, and also explicitly involved in data inference. Third, the proposed framework incorporates both shape information and the CNN architecture into semantic labeling through a fusion of probabilistic multi-class likelihood. Experimental results demonstrate competitive semantic labeling performance on two standard datasets both qualitatively and quantitatively, especially for rare-class objects.

摘要

自然场景图像中的稀有类对象通常较小且出现频率较低,但对于场景理解而言,它们往往比常见对象传达更重要的信息。然而,由于出现频率低和空间覆盖范围有限这两个主要原因,它们在场景标注研究中常常被忽视。已经提出了许多方法来提高整体语义标注性能,但只有少数方法考虑了稀有类对象。在这项工作中,我们通过三种技术提出了一个特别考虑稀有类的深度语义标注框架。首先,开发了一种新颖的双分辨率从粗到精的超像素表示,其中精细和粗糙超像素分别应用于稀有类和背景区域。这种独特的双重表示允许将形状特征无缝整合到集成的全局和局部卷积神经网络(CNN)模型中。其次,形状信息在从重新平衡的训练数据中对频繁类和稀有类进行CNN特征学习期间直接参与,并且也明确参与数据推理。第三,所提出的框架通过概率多类似然的融合将形状信息和CNN架构都纳入语义标注中。实验结果在定性和定量方面都展示了在两个标准数据集上具有竞争力的语义标注性能,特别是对于稀有类对象。

相似文献

7
Domain adaptive semantic segmentation by optimal transport.基于最优传输的域自适应语义分割
Fundam Res. 2023 Jul 1;4(5):981-991. doi: 10.1016/j.fmre.2023.06.006. eCollection 2024 Sep.

本文引用的文献

1
Scene Segmentation with DAG-Recurrent Neural Networks.基于有向无环图递归神经网络的场景分割。
IEEE Trans Pattern Anal Mach Intell. 2018 Jun;40(6):1480-1493. doi: 10.1109/TPAMI.2017.2712691. Epub 2017 Jun 6.
3
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
4
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Learning hierarchical features for scene labeling.学习用于场景标注的层次特征。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1915-29. doi: 10.1109/TPAMI.2012.231.
7
SLIC superpixels compared to state-of-the-art superpixel methods.SLIC 超像素与最先进的超像素方法比较。
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. doi: 10.1109/TPAMI.2012.120.
8
Nonparametric Scene Parsing via Label Transfer.基于标签转移的非参数场景解析。
IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2368-82. doi: 10.1109/TPAMI.2011.131. Epub 2011 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验