Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath
The authors are with the Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093 USA.
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
In this paper, based on sparsity-promoting regularization techniques from the sparse signal recovery (SSR) area, least mean square (LMS)-type sparse adaptive filtering algorithms are derived. The approach mimics the iterative reweighted and SSR methods that majorize the regularized objective function during the optimization process. We show that introducing the majorizers leads to the same algorithm as simply using the gradient update of the regularized objective function, as is done in existing approaches. Different from the past works, the reweighting formulation naturally leads to an affine scaling transformation (AST) strategy, which effectively introduces a diagonal weighting on the gradient, giving rise to new algorithms that demonstrate improved convergence properties. Interestingly, setting the regularization coefficient to zero in the proposed AST-based framework leads to the Sparsity-promoting LMS (SLMS) and Sparsity-promoting Normalized LMS (SNLMS) algorithms, which exploit but do not strictly enforce the sparsity of the system response if it already exists. The SLMS and SNLMS realize proportionate adaptation for convergence speedup should sparsity be present in the underlying system response. In this manner, we develop a new way for rigorously deriving a large class of proportionate algorithms, and also explain why they are useful in applications where the underlying systems admit certain sparsity, e.g., in acoustic echo and feedback cancellation.
在本文中,基于稀疏信号恢复(SSR)领域的稀疏性促进正则化技术,推导了最小均方(LMS)型稀疏自适应滤波算法。该方法模仿了迭代加权和SSR方法,即在优化过程中对正则化目标函数进行主元化。我们表明,引入主元会得到与简单使用正则化目标函数的梯度更新相同的算法,这与现有方法中的做法相同。与过去的工作不同,重新加权公式自然地导致了仿射缩放变换(AST)策略,该策略有效地在梯度上引入了对角加权,从而产生了具有改进收敛特性的新算法。有趣的是,在所提出的基于AST的框架中将正则化系数设置为零会导致稀疏性促进LMS(SLMS)和稀疏性促进归一化LMS(SNLMS)算法,如果系统响应已经存在稀疏性,它们会利用但不严格强制其稀疏性。如果底层系统响应中存在稀疏性,SLMS和SNLMS会实现比例自适应以加快收敛速度。通过这种方式,我们开发了一种严格推导一大类比例算法的新方法,并且还解释了为什么它们在底层系统具有一定稀疏性的应用中(例如在声学回声和反馈消除中)是有用的。