Suppr超能文献

基于最小化差异度量以促进稀疏性的比例自适应滤波器

Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.

作者信息

Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath

机构信息

Department of Electrical and Computer Engineering University of California, San Diego.

出版信息

Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.

Abstract

In this paper, a novel way of deriving proportionate adaptive filters is proposed based on diversity measure minimization using the iterative reweighting techniques well-known in the sparse signal recovery (SSR) area. The resulting least mean square (LMS)-type and normalized LMS (NLMS)-type sparse adaptive filtering algorithms can incorporate various diversity measures that have proved effective in SSR. Furthermore, by setting the regularization coefficient of the diversity measure term to zero in the resulting algorithms, Sparsity promoting LMS (SLMS) and Sparsity promoting NLMS (SNLMS) are introduced, which exploit but do not strictly enforce the sparsity of the system response if it already exists. Moreover, unlike most existing proportionate algorithms that design the step-size control factors based on heuristics, our SSR-based framework leads to designing the factors in a more systematic way. Simulation results are presented to demonstrate the convergence behavior of the derived algorithms for systems with different sparsity levels.

摘要

本文提出了一种基于稀疏信号恢复(SSR)领域中广为人知的迭代重加权技术来最小化分集度量的推导比例自适应滤波器的新方法。由此产生的最小均方(LMS)型和归一化LMS(NLMS)型稀疏自适应滤波算法可以纳入各种已在SSR中证明有效的分集度量。此外,通过在所得算法中将分集度量项的正则化系数设置为零,引入了稀疏性促进LMS(SLMS)和稀疏性促进NLMS(SNLMS),它们利用但不严格强制系统响应的稀疏性(如果已经存在)。而且,与大多数基于启发式设计步长控制因子的现有比例算法不同,我们基于SSR的框架导致以更系统的方式设计这些因子。给出了仿真结果以证明所推导算法对于具有不同稀疏度水平的系统的收敛行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec4/7676632/eac6cf36a07b/nihms-1644992-f0001.jpg

相似文献

1
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.
2
Proportionate Adaptive Filtering Algorithms Derived Using an Iterative Reweighting Framework.基于迭代重加权框架推导的比例自适应滤波算法
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
3
A Sparse Conjugate Gradient Adaptive Filter.一种稀疏共轭梯度自适应滤波器。
IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.
4
A Generalized Proportionate-Type Normalized Subband Adaptive Filter.一种广义比例型归一化子带自适应滤波器。
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
7
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.SSGD:用于无偏深度神经网络剪枝的稀疏性促进随机梯度下降算法
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:5410-5414. doi: 10.1109/icassp40776.2020.9054436. Epub 2020 May 14.
8
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.

引用本文的文献

1
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.
2
A Generalized Proportionate-Type Normalized Subband Adaptive Filter.一种广义比例型归一化子带自适应滤波器。
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
3
Proportionate Adaptive Filtering Algorithms Derived Using an Iterative Reweighting Framework.基于迭代重加权框架推导的比例自适应滤波算法
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
4
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.SSGD:用于无偏深度神经网络剪枝的稀疏性促进随机梯度下降算法
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:5410-5414. doi: 10.1109/icassp40776.2020.9054436. Epub 2020 May 14.
5
A Sparse Conjugate Gradient Adaptive Filter.一种稀疏共轭梯度自适应滤波器。
IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验