Suppr超能文献

联合利用去相关和稀疏性以改善助听器中的反馈消除

Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.

作者信息

Chen Kuan-Lin, Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego.

出版信息

Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.

Abstract

We propose a new adaptive feedback cancellation (AFC) system in hearing aids (HAs) based on a well-posed optimization criterion that jointly considers both decorrelation of the signals and sparsity of the underlying channel. We show that the least squares criterion on subband errors regularized by a -norm-like diversity measure can be used to simultaneously decorrelate the speech signals and exploit sparsity of the acoustic feedback path impulse response. Compared with traditional subband adaptive filters that are not appropriate for incorporating sparsity due to shorter sub-filters, our proposed framework is suitable for promoting sparse characteristics, as the update rule utilizing subband information actually operates in the fullband. Simulation results show that the normalized misalignment, added stable gain, and other objective metrics of the AFC are significantly improved by choosing a proper sparsity promoting factor and a suitable number of subbands. More importantly, the results indicate that the benefits of subband decomposition and sparsity promoting are complementary and additive for AFC in HAs.

摘要

我们基于一个适定的优化准则,提出了一种用于助听器(HA)的新型自适应反馈抵消(AFC)系统,该准则同时考虑了信号的去相关性和底层通道的稀疏性。我们表明,通过类似 -范数的分集度量对子带误差进行正则化的最小二乘准则,可用于同时使语音信号去相关,并利用声学反馈路径冲激响应的稀疏性。与传统子带自适应滤波器相比,由于子滤波器较短,传统子带自适应滤波器不适用于纳入稀疏性,而我们提出的框架适用于促进稀疏特性,因为利用子带信息的更新规则实际上是在全频带中运行的。仿真结果表明,通过选择合适的稀疏性促进因子和合适的子带数量,AFC的归一化失调、增加的稳定增益及其他客观指标都得到了显著改善。更重要的是,结果表明子带分解和稀疏性促进的好处对于HA中的AFC是互补且相加的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/643d/8903030/93c3e1ab177d/nihms-1784755-f0001.jpg

相似文献

1
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.
2
A Generalized Proportionate-Type Normalized Subband Adaptive Filter.一种广义比例型归一化子带自适应滤波器。
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
6
Proportionate Adaptive Filtering Algorithms Derived Using an Iterative Reweighting Framework.基于迭代重加权框架推导的比例自适应滤波算法
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
10
Improving misalignment for feedback path estimation in hearing aid by multiple short-time noise injections.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5230-3. doi: 10.1109/EMBC.2012.6347173.

引用本文的文献

1
A Generalized Proportionate-Type Normalized Subband Adaptive Filter.一种广义比例型归一化子带自适应滤波器。
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
2
A Realtime, Open-Source Speech-Processing Platform for Research in Hearing Loss Compensation.一个用于听力损失补偿研究的实时、开源语音处理平台。
Conf Rec Asilomar Conf Signals Syst Comput. 2017 Oct-Nov;2017:1900-1904. doi: 10.1109/acssc.2017.8335694. Epub 2018 Apr 16.
3
Proportionate Adaptive Filtering Algorithms Derived Using an Iterative Reweighting Framework.基于迭代重加权框架推导的比例自适应滤波算法
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
4
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.
6
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.SSGD:用于无偏深度神经网络剪枝的稀疏性促进随机梯度下降算法
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:5410-5414. doi: 10.1109/icassp40776.2020.9054436. Epub 2020 May 14.
7
A Sparse Conjugate Gradient Adaptive Filter.一种稀疏共轭梯度自适应滤波器。
IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.
8
A Wearable Platform for Research in Augmented Hearing.一种用于增强听力研究的可穿戴平台。
Conf Rec Asilomar Conf Signals Syst Comput. 2018 Oct;2018:223-227. doi: 10.1109/ACSSC.2018.8645557. Epub 2019 Feb 21.

本文引用的文献

1
A Generalized Proportionate-Type Normalized Subband Adaptive Filter.一种广义比例型归一化子带自适应滤波器。
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
2
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.
4
Room reverberation effects in hearing aid feedback cancellation.
J Acoust Soc Am. 2001 Jan;109(1):367-78. doi: 10.1121/1.1332379.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验