Röhrich Sebastian, Hofmanninger Johannes, Prayer Florian, Müller Henning, Prosch Helmut, Langs Georg
Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.).
Radiol Cardiothorac Imaging. 2020 Aug 27;2(4):e190190. doi: 10.1148/ryct.2020190190. eCollection 2020 Aug.
Chest CT scans are one of the most common medical imaging procedures. The automatic extraction and quantification of imaging features may help in diagnosis, prognosis of, or treatment decision in cardiovascular, pulmonary, and metabolic diseases. However, an adequate sample size as a statistical necessity for radiomics studies is often difficult to achieve in prospective trials. By exploiting imaging data from clinical routine, a much larger amount of data could be used than in clinical trials. Still, there is only little literature on the implementation of radiomics in clinical routine chest CT scans. Reasons are heterogeneous CT scanning protocols and the resulting technical variability (eg, different slice thicknesses, reconstruction kernels or timings after contrast material administration) in routine CT imaging data. This review summarizes the recent state of the art of studies aiming to develop quantifiable imaging biomarkers at chest CT, such as for osteoporosis, chronic obstructive pulmonary disease, interstitial lung disease, and coronary artery disease. This review explains solutions to overcome heterogeneity in routine data such as the use of imaging repositories, the standardization of radiomic features, algorithmic approaches to improve feature stability, test-retest studies, and the evolution of deep learning for modeling radiomics features. © RSNA, 2020 See also the commentary by Kay in this issue.
胸部CT扫描是最常见的医学成像检查之一。成像特征的自动提取和量化有助于心血管疾病、肺部疾病和代谢性疾病的诊断、预后评估或治疗决策。然而,作为放射组学研究的统计学必要条件,前瞻性试验中往往难以获得足够的样本量。通过利用临床常规的成像数据,可以使用比临床试验中多得多的数据。尽管如此,关于在临床常规胸部CT扫描中实施放射组学的文献仍然很少。原因在于常规CT成像数据中CT扫描协议的异质性以及由此产生的技术变异性(例如,不同的层厚、重建内核或对比剂注射后的时间)。本综述总结了旨在开发胸部CT可量化成像生物标志物(如用于骨质疏松症、慢性阻塞性肺疾病、间质性肺疾病和冠状动脉疾病)的研究的最新进展。本综述解释了克服常规数据异质性的解决方案,如使用成像数据库、放射组学特征的标准化、提高特征稳定性的算法方法、重测研究以及用于放射组学特征建模的深度学习的发展。©RSNA,2020 另见本期Kay的评论。