Suppr超能文献

基于临床血液检测数据预测COVID-19疾病严重程度的机器学习方法:统计分析与模型开发

Machine Learning Approach to Predicting COVID-19 Disease Severity Based on Clinical Blood Test Data: Statistical Analysis and Model Development.

作者信息

Aktar Sakifa, Ahamad Md Martuza, Rashed-Al-Mahfuz Md, Azad Akm, Uddin Shahadat, Kamal Ahm, Alyami Salem A, Lin Ping-I, Islam Sheikh Mohammed Shariful, Quinn Julian Mw, Eapen Valsamma, Moni Mohammad Ali

机构信息

Department of Computer Science and Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh.

Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh.

出版信息

JMIR Med Inform. 2021 Apr 13;9(4):e25884. doi: 10.2196/25884.

Abstract

BACKGROUND

Accurate prediction of the disease severity of patients with COVID-19 would greatly improve care delivery and resource allocation and thereby reduce mortality risks, especially in less developed countries. Many patient-related factors, such as pre-existing comorbidities, affect disease severity and can be used to aid this prediction.

OBJECTIVE

Because rapid automated profiling of peripheral blood samples is widely available, we aimed to investigate how data from the peripheral blood of patients with COVID-19 can be used to predict clinical outcomes.

METHODS

We investigated clinical data sets of patients with COVID-19 with known outcomes by combining statistical comparison and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient boosting machine, support vector machine, k-nearest neighbor, and deep learning methods.

RESULTS

Our work revealed that several clinical parameters that are measurable in blood samples are factors that can discriminate between healthy people and COVID-19-positive patients, and we showed the value of these parameters in predicting later severity of COVID-19 symptoms. We developed a number of analytical methods that showed accuracy and precision scores >90% for disease severity prediction.

CONCLUSIONS

We developed methodologies to analyze routine patient clinical data that enable more accurate prediction of COVID-19 patient outcomes. With this approach, data from standard hospital laboratory analyses of patient blood could be used to identify patients with COVID-19 who are at high risk of mortality, thus enabling optimization of hospital facilities for COVID-19 treatment.

摘要

背景

准确预测新型冠状病毒肺炎(COVID-19)患者的疾病严重程度将极大地改善医疗服务提供和资源分配,从而降低死亡风险,尤其是在欠发达国家。许多与患者相关的因素,如既往合并症,会影响疾病严重程度,可用于辅助这种预测。

目的

由于外周血样本的快速自动化分析广泛可用,我们旨在研究如何利用COVID-19患者外周血数据来预测临床结局。

方法

我们通过将统计比较和相关方法与机器学习算法相结合,研究了具有已知结局的COVID-19患者的临床数据集;机器学习算法包括决策树、随机森林、梯度提升机变体、支持向量机、k近邻和深度学习方法。

结果

我们的研究表明,血液样本中可测量的几个临床参数是区分健康人和COVID-19阳性患者的因素,并且我们展示了这些参数在预测COVID-19症状后期严重程度方面的价值。我们开发了多种分析方法,这些方法在疾病严重程度预测方面的准确率和精确率得分均>90%。

结论

我们开发了分析常规患者临床数据的方法,能够更准确地预测COVID-19患者的结局。通过这种方法,患者血液的标准医院实验室分析数据可用于识别有高死亡风险的COVID-19患者,从而优化COVID-19治疗的医院设施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0982/8045777/b177d35d6d1e/medinform_v9i4e25884_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验