文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用电子健康记录数据开发机器学习模型以识别住院患者中的抗生素使用情况。

Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients.

机构信息

Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University Medical Center, Durham, North Carolina.

Duke Clinical Research Institute, Durham, North Carolina.

出版信息

JAMA Netw Open. 2021 Mar 1;4(3):e213460. doi: 10.1001/jamanetworkopen.2021.3460.


DOI:10.1001/jamanetworkopen.2021.3460
PMID:33779743
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8008288/
Abstract

IMPORTANCE: Comparisons of antimicrobial use among hospitals are difficult to interpret owing to variations in patient case mix. Risk-adjustment strategies incorporating larger numbers of variables haves been proposed as a method to improve comparisons for antimicrobial stewardship assessments. OBJECTIVE: To evaluate whether variables of varying complexity and feasibility of measurement, derived retrospectively from the electronic health records, accurately identify inpatient antimicrobial use. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study, using a 2-stage random forests machine learning modeling analysis of electronic health record data. Data were split into training and testing sets to measure model performance using area under the curve and absolute error. All adult and pediatric inpatient encounters from October 1, 2015, to September 30, 2017, at 2 community hospitals and 1 academic medical center in the Duke University Health System were analyzed. A total of 204 candidate variables were categorized into 4 tiers based on feasibility of measurement from the electronic health records. MAIN OUTCOMES AND MEASURES: Antimicrobial exposure was measured at the encounter level in 2 ways: binary (ever or never) and number of days of therapy. Analyses were stratified by age (pediatric or adult), unit type, and antibiotic group. RESULTS: The data set included 170 294 encounters and 204 candidate variables from 3 hospitals during the 3-year study period. Antimicrobial exposure occurred in 80 190 encounters (47%); 64 998 (38%) received 1 to 6 days of therapy, and 15 192 (9%) received 7 or more days of therapy. Two-stage models identified antimicrobial use with high fidelity (mean area under the curve, 0.85; mean absolute error, 1.0 days of therapy). Addition of more complex variables increased accuracy, with largest improvements occurring with inclusion of diagnosis information. Accuracy varied based on location and antibiotic group. Models underestimated the number of days of therapy of encounters with long lengths of stay. CONCLUSIONS AND RELEVANCE: Models using variables derived from electronic health records identified antimicrobial exposure accurately. Future risk-adjustment strategies incorporating encounter-level information may make comparisons of antimicrobial use more meaningful for hospital antimicrobial stewardship assessments.

摘要

重要性:由于患者病例组合的差异,医院之间的抗菌药物使用情况比较难以解释。已经提出了纳入更多变量的风险调整策略,作为提高抗菌药物管理评估比较的一种方法。 目的:评估从电子健康记录中回顾性获得的复杂程度和可测量性不同的变量是否能准确识别住院患者的抗菌药物使用情况。 设计、地点和参与者:这是一项回顾性队列研究,使用电子健康记录数据的两阶段随机森林机器学习建模分析。数据被分为训练集和测试集,使用曲线下面积和绝对误差来衡量模型性能。所有 2015 年 10 月 1 日至 2017 年 9 月 30 日期间,杜克大学卫生系统的 2 家社区医院和 1 家学术医疗中心的成年和儿科住院患者的所有就诊记录都进行了分析。共有 204 个候选变量根据从电子健康记录中获取的可行性分为 4 个层次。 主要结果和测量:抗菌药物暴露在就诊水平上以 2 种方式进行测量:二进制(使用或未使用)和治疗天数。分析按年龄(儿科或成人)、病房类型和抗生素组进行分层。 结果:在 3 年的研究期间,该数据集包括来自 3 家医院的 170294 次就诊记录和 204 个候选变量。抗菌药物暴露发生在 80190 次就诊中(47%);64998 次(38%)接受 1-6 天的治疗,15192 次(9%)接受 7 天或以上的治疗。两阶段模型以高保真度识别了抗菌药物的使用(平均曲线下面积为 0.85;平均治疗天数的绝对误差为 1.0 天)。增加更复杂的变量可以提高准确性,最大的改进出现在纳入诊断信息时。准确性因位置和抗生素组而异。对于住院时间较长的就诊,模型低估了治疗天数。 结论和相关性:使用电子健康记录中提取的变量建立的模型可以准确地识别抗菌药物的使用情况。未来纳入就诊水平信息的风险调整策略可能会使医院抗菌药物管理评估中的抗菌药物使用比较更有意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767c/8008288/8a1d476b71da/jamanetwopen-e213460-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767c/8008288/d59697c86b55/jamanetwopen-e213460-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767c/8008288/8a1d476b71da/jamanetwopen-e213460-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767c/8008288/d59697c86b55/jamanetwopen-e213460-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767c/8008288/8a1d476b71da/jamanetwopen-e213460-g002.jpg

相似文献

[1]
Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients.

JAMA Netw Open. 2021-3-1

[2]
Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.

JAMA Netw Open. 2018-8-3

[3]
Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data.

Ann Am Thorac Soc. 2018-7

[4]
Electronically delivered interventions to reduce antibiotic prescribing for respiratory infections in primary care: cluster RCT using electronic health records and cohort study.

Health Technol Assess. 2019-3

[5]
Assessment of the Appropriateness of Antimicrobial Use in US Hospitals.

JAMA Netw Open. 2021-3-1

[6]
Total duration of antimicrobial therapy resulting from inpatient hospitalization.

Infect Control Hosp Epidemiol. 2019-5-28

[7]
Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support.

JAMA Netw Open. 2019-8-2

[8]
Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach.

J Appl Microbiol. 2019-11-12

[9]
Predictors of in-hospital length of stay among cardiac patients: A machine learning approach.

Int J Cardiol. 2019-1-19

[10]
Use of Contact Networks to Estimate Potential Pathogen Risk Exposure in Hospitals.

JAMA Netw Open. 2022-8-1

引用本文的文献

[1]
An interpretable machine learning approach for predicting drug-resistant epilepsy in children with tuberous sclerosis complex.

Front Neurol. 2025-8-4

[2]
Development and validation of interpretable machine learning models for predicting AKI risk in patients treated with PD-1/PD-L1: a retrospective study.

BMC Med Inform Decis Mak. 2025-8-8

[3]
Metrics Selection and Risk Adjustment Methods to Benchmark Inpatient Antibiotic Use.

JAMA Netw Open. 2025-6-2

[4]
Artificial intelligence should genuinely support clinical reasoning and decision making to bridge the translational gap.

NPJ Digit Med. 2025-6-10

[5]
Improving Clinical Documentation with Artificial Intelligence: A Systematic Review.

Perspect Health Inf Manag. 2024-6-1

[6]
Development and validation of an interpretable machine learning model for predicting the risk of hepatocellular carcinoma in patients with chronic hepatitis B: a case-control study.

BMC Gastroenterol. 2025-3-11

[7]
The Role of Artificial Intelligence and Machine Learning Models in Antimicrobial Stewardship in Public Health: A Narrative Review.

Antibiotics (Basel). 2025-1-30

[8]
State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting.

Antibiotics (Basel). 2025-1-27

[9]
Development and validation of an interpretable machine learning model for predicting the risk of distant metastasis in papillary thyroid cancer: a multicenter study.

EClinicalMedicine. 2024-10-30

[10]
Artificial Intelligence to Close the Gap between Pharmacokinetic/Pharmacodynamic Targets and Clinical Outcomes in Critically Ill Patients: A Narrative Review on Beta Lactams.

Antibiotics (Basel). 2024-9-6

本文引用的文献

[1]
Electronically Available Patient Claims Data Improve Models for Comparing Antibiotic Use Across Hospitals: Results From 576 US Facilities.

Clin Infect Dis. 2021-12-6

[2]
National Healthcare Safety Network Standardized Antimicrobial Administration Ratios (SAARs): A Progress Report and Risk Modeling Update Using 2017 Data.

Clin Infect Dis. 2020-12-17

[3]
Appropriateness of outpatient antibiotic prescribing among privately insured US patients: ICD-10-CM based cross sectional study.

BMJ. 2019-1-16

[4]
The Fog May be Lifting Around Antibiotic Use Metrics and Interfacility Comparison.

Clin Infect Dis. 2018-11-13

[5]
Benchmarking Inpatient Antimicrobial Use: A Comparison of Risk-Adjusted Observed-to-Expected Ratios.

Clin Infect Dis. 2018-11-13

[6]
The Standardized Antimicrobial Administration Ratio: A New Metric for Measuring and Comparing Antibiotic Use.

Clin Infect Dis. 2018-7-2

[7]
Variability in antibiotic use across Ontario acute care hospitals.

J Antimicrob Chemother. 2017-2

[8]
Antibiotic Use in Small Community Hospitals.

Clin Infect Dis. 2016-9-30

[9]
Antimicrobial use metrics and benchmarking to improve stewardship outcomes: methodology, opportunities, and challenges.

Infect Dis Clin North Am. 2014-6

[10]
Implementing a strategy for monitoring inpatient antimicrobial use among hospitals in the United States.

Clin Infect Dis. 2013-10-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索