Suppr超能文献

一种用于预测结节性硬化症患儿耐药性癫痫的可解释机器学习方法。

An interpretable machine learning approach for predicting drug-resistant epilepsy in children with tuberous sclerosis complex.

作者信息

Fu Jie, Zhang Genfu, Yang Zhixian, Qin Jiong

机构信息

Department of Pediatrics, Peking University People's Hospital, Beijing, China.

Epilepsy Center, Peking University People's Hospital, Beijing, China.

出版信息

Front Neurol. 2025 Aug 4;16:1623212. doi: 10.3389/fneur.2025.1623212. eCollection 2025.

Abstract

BACKGROUND

This study developed and validated an interpretable machine learning (ML) algorithm for predicting the risk of drug-resistant epilepsy (DRE) in children with Tuberous sclerosis (TSC).

METHODS

To estimate the risk of DRE in pediatric TSC patients, an interpretable ML model was developed and validated. Clinical data were retrospectively collected from 88 pediatric patients with TSC-related epilepsy. 9 ML algorithms were applied, such as random forest (RF), to construct predictive models. To improve interpretability, SHapley Additive exPlanations (SHAP) were employed, providing both global and individualized feature importance explanations.

RESULTS

The RF model outperformed all other algorithms, yielding an AUC of 0.862 and a specificity of 0.930. Key predictors of DRE included a history of infantile epileptic spasms syndrome (IESS), multifocal discharges on EEG, three or more cortical tubers, and the use of three or more antiseizure medications (ASMs). The model was further evaluated using tenfold cross-validation and showed good calibration and clinical utility, as confirmed by decision curve analysis (DCA).

CONCLUSION

The RF-based prediction model provides a valuable tool for early identification of children with TSC at high risk for DRE, supporting individualized treatment decisions. The integration of SHAP improves model transparency and enhances clinical interpretability.

摘要

背景

本研究开发并验证了一种可解释的机器学习(ML)算法,用于预测结节性硬化症(TSC)患儿耐药性癫痫(DRE)的风险。

方法

为了评估儿科TSC患者发生DRE的风险,开发并验证了一种可解释的ML模型。回顾性收集了88例与TSC相关癫痫的儿科患者的临床数据。应用了9种ML算法,如随机森林(RF),来构建预测模型。为了提高可解释性,采用了SHapley加性解释(SHAP),提供全局和个性化的特征重要性解释。

结果

RF模型优于所有其他算法,AUC为0.862,特异性为0.930。DRE的关键预测因素包括婴儿痉挛症综合征(IESS)病史、脑电图多灶性放电、三个或更多皮质结节以及使用三种或更多抗癫痫药物(ASM)。该模型通过十折交叉验证进一步评估,并显示出良好的校准和临床实用性,决策曲线分析(DCA)证实了这一点。

结论

基于RF的预测模型为早期识别TSC高危DRE患儿提供了有价值的工具,支持个性化治疗决策。SHAP的整合提高了模型的透明度并增强了临床可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2fd/12358403/0f924b8f7986/fneur-16-1623212-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验