Sokol Kacper, Fackler James, Vogt Julia E
Department of Computer Science, ETH Zurich, Zurich, Switzerland.
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
NPJ Digit Med. 2025 Jun 10;8(1):345. doi: 10.1038/s41746-025-01725-9.
Artificial intelligence promises to revolutionise medicine, yet its impact remains limited because of the pervasive translational gap. We posit that the prevailing technology-centric approaches underpin this challenge, rendering such systems fundamentally incompatible with clinical practice, specifically diagnostic reasoning and decision making. Instead, we propose a novel sociotechnical conceptualisation of data-driven support tools designed to complement doctors' cognitive and epistemic activities. Crucially, it prioritises real-world impact over superhuman performance on inconsequential benchmarks.
人工智能有望彻底改变医学,但由于普遍存在的转化差距,其影响仍然有限。我们认为,当前以技术为中心的方法是这一挑战的根源,使得此类系统从根本上与临床实践不兼容,尤其是诊断推理和决策。相反,我们提出了一种全新的社会技术概念,将数据驱动的支持工具设计为补充医生的认知和认识活动。至关重要的是,它将现实世界的影响置于无关紧要的基准上的超人表现之上。