Suppr超能文献

EllSeg:用于稳健注视跟踪的椭圆分割框架。

EllSeg: An Ellipse Segmentation Framework for Robust Gaze Tracking.

出版信息

IEEE Trans Vis Comput Graph. 2021 May;27(5):2757-2767. doi: 10.1109/TVCG.2021.3067765. Epub 2021 Apr 15.

Abstract

Ellipse fitting, an essential component in pupil or iris tracking based video oculography, is performed on previously segmented eye parts generated using various computer vision techniques. Several factors, such as occlusions due to eyelid shape, camera position or eyelashes, frequently break ellipse fitting algorithms that rely on well-defined pupil or iris edge segments. In this work, we propose training a convolutional neural network to directly segment entire elliptical structures and demonstrate that such a framework is robust to occlusions and offers superior pupil and iris tracking performance (at least 10% and 24% increase in pupil and iris center detection rate respectively within a two-pixel error margin) compared to using standard eye parts segmentation for multiple publicly available synthetic segmentation datasets.

摘要

椭圆拟合是基于瞳孔或虹膜跟踪的视频眼动追踪的一个基本组成部分,它是在使用各种计算机视觉技术生成的已分割的眼部区域上进行的。由于眼睑形状、相机位置或睫毛等因素的遮挡,许多依赖于定义良好的瞳孔或虹膜边缘段的椭圆拟合算法经常会中断。在这项工作中,我们提出了一种训练卷积神经网络来直接分割整个椭圆形结构的方法,并证明了这种框架对于遮挡具有鲁棒性,并且与使用标准眼部区域分割相比,在多个公开的合成分割数据集上,具有更好的瞳孔和虹膜跟踪性能(在两个像素的误差范围内,瞳孔和虹膜中心检测率分别至少提高了 10%和 24%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验