Suppr超能文献

基于酶的苹果酸安培生物传感器——综述

Enzyme-based amperometric biosensors for malic acid - A review.

作者信息

Matthews Christopher J, Andrews Emma S V, Patrick Wayne M

机构信息

Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.

Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.

出版信息

Anal Chim Acta. 2021 Apr 29;1156:338218. doi: 10.1016/j.aca.2021.338218. Epub 2021 Jan 21.

Abstract

Malic acid is a key flavour component of many fruits and vegetables. There is significant interest in technologies for monitoring its concentration, particularly in winemaking. In this review we systematically and comprehensively chart progress in the development of enzyme-based amperometric biosensors for malic acid. We summarise the components and analytical parameters of malic acid sensors that have been reported over the past four decades, discussing their merits and pitfalls in terms of accuracy, sensitivity, linear range, response time and stability. We discuss how advances in electrode materials, electron mediators and the use of coupled enzymes have improved sensitivity and minimised interference, but also uncover a trade-off between sensitivity and linear range. A particular focus of our review is the three types of malate oxidoreductase enzyme that have been used in malic acid biosensors. We describe their different properties and conclude that identifying and/or engineering superior alternatives will be a key future direction for improving the commercial utility of malic acid biosensors.

摘要

苹果酸是许多水果和蔬菜中的关键风味成分。人们对监测其浓度的技术有着浓厚兴趣,尤其是在酿酒领域。在本综述中,我们系统且全面地梳理了用于检测苹果酸的基于酶的安培型生物传感器的发展进程。我们总结了过去四十年来所报道的苹果酸传感器的组成部分和分析参数,从准确性、灵敏度、线性范围、响应时间和稳定性等方面讨论了它们的优缺点。我们探讨了电极材料、电子媒介体以及偶联酶的使用方面的进展如何提高了灵敏度并减少了干扰,但同时也揭示了灵敏度和线性范围之间的权衡。我们综述的一个特别重点是在苹果酸生物传感器中使用的三种苹果酸氧化还原酶。我们描述了它们的不同特性,并得出结论,识别和/或设计出更优的替代酶将是提高苹果酸生物传感器商业实用性的关键未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验