Frutos Roger, Serra-Cobo Jordi, Pinault Lucile, Lopez Roig Marc, Devaux Christian A
Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR 17, Intertryp, Montpellier, France.
Institut d'Électronique et des Systèmes, UMR 5214, Université de Montpellier-CNRS, Montpellier, France.
Front Microbiol. 2021 Mar 15;12:591535. doi: 10.3389/fmicb.2021.591535. eCollection 2021.
The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111 million reported cases and 2,500,000 deaths worldwide (mortality rate currently estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus (β-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which causes the winter common cold (fatality rate 0.5%), were already a source of public health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks of β-CoV-induced diseases raise the question of the dynamic of propagation of this group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot for emergence. However, there might be other regional hot spots, as seen with MERS-CoV, which emerged in the Arabian Peninsula. β-CoVs responsible for human respiratory infections are closely related to bat-borne viruses. Bats are present worldwide and their level of infection with CoVs is very high on all continents. However, there is as yet no evidence of direct bat-to-human coronavirus infection. Transmission of β-CoV to humans is considered to occur accidentally through contact with susceptible intermediate animal species. This zoonotic emergence is a complex process involving not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal aspects. Here, we try to understand why only few hot spots of β-CoV emergence have been identified despite worldwide bats and bat-borne β-CoV distribution. In this work, we analyze and compare the natural and anthropogenic environments associated with the emergence of β-CoV and outline conserved features likely to create favorable conditions for a new epidemic. We suggest monitoring South and East Africa as well as South America as these regions bring together many of the conditions that could make them future hot spots.
目前的2019冠状病毒病(COVID-19)大流行,全球报告病例超过1.11亿例,死亡250万例(目前死亡率估计为2.2%),强烈提醒人们冠状病毒(CoV)引发的疾病仍然是对人类的重大威胁。COVID-19只是β冠状病毒(β-CoV)流行/大流行的最新案例。在过去20年里,两次致命的CoV疫情,严重急性呼吸综合征(SARS;病死率9.6%)和中东呼吸综合征(MERS;病死率34.7%),再加上导致冬季普通感冒的HCoV-HKU1的出现(病死率0.5%),已经引起了公共卫生方面的关注。β冠状病毒对家畜也可能构成威胁,猪急性腹泻综合征(SADS)在猪群中的流行就是证明。β-CoV引发疾病的这些反复爆发,引发了关于这组病毒在野生动物和人类生态系统中传播动态的问题。严重急性呼吸综合征冠状病毒(SARS-CoV)、严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和HCoV-HKU1在亚洲出现,强烈表明存在一个病毒出现的区域热点。然而,可能还有其他区域热点,如在阿拉伯半岛出现的中东呼吸综合征冠状病毒(MERS-CoV)。引起人类呼吸道感染的β-CoV与蝙蝠携带的病毒密切相关。蝙蝠遍布全球,各大洲的蝙蝠感染CoV的比例都非常高。然而,目前尚无证据表明存在蝙蝠直接将冠状病毒传染给人类的情况。β-CoV向人类的传播被认为是通过与易感中间动物物种接触而意外发生的。这种人畜共患病毒的出现是一个复杂的过程,不仅涉及蝙蝠、野生动物和自然生态系统,还涉及许多人为和社会因素。在这里,我们试图理解为什么尽管蝙蝠和蝙蝠携带的β-CoV在全球范围内分布,但仅发现了少数β-CoV出现的热点地区。在这项工作中,我们分析并比较了与β-CoV出现相关的自然和人为环境,并概述了可能为新疫情创造有利条件的保守特征。我们建议对南非、东非以及南美洲进行监测,因为这些地区具备许多可能使其成为未来热点地区的条件。