Humeau A, Piñeirua M, Crassous J, Casas J
Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université François-Rabelais, Tours 37200, France.
Institut de Physique de Rennes (UMR UR1-CNRS 6251), Université Rennes 1, Campus de Beaulieu, Rennes F-35042, France.
Integr Org Biol. 2019 Sep 13;1(1):obz020. doi: 10.1093/iob/obz020. eCollection 2019.
Many insects encounter locomotory difficulties in walking up sand inclines. This is masterfully exploited by some species for building traps from which prey are rarely able to escape, as the antlion and its deadly pit. The aim of this work is to tear apart the relative roles of granular material properties and slope steepness on the insect leg kinematics, gait patterns, and locomotory stability. For this, we used factorial manipulative experiments with different granular media inclines and the ant . Our results show that its locomotion is similar on granular and solid media, while for granular inclined slopes we observe a loss of stability followed by a gait pattern transition from tripod to metachronal. This implies that neither the discrete nature nor the roughness properties of sand alone are sufficient to explain the struggling of ants on sandy slopes: the interaction between sand properties and slope is key. We define an abnormality index that allows us to quantify the locomotory difficulties of insects walking up a granular incline. The probability of its occurrence reveals the local slipping of the granular media as a consequence of the pressure exerted by the ant's legs. Our findings can be extended to other models presenting locomotory difficulties for insects, such as slippery walls of urns of pitcher plants. How small arthropods walking on granular and brittle materials solve their unique stability trade-off will require a thorough understanding of the transfer of energy from leg to substrate at the particle level.
许多昆虫在攀爬沙地斜坡时会遇到移动困难。一些物种巧妙地利用了这一点来建造陷阱,猎物很少能从中逃脱,比如蚁狮及其致命的陷阱。这项工作的目的是剖析颗粒材料特性和斜坡陡度对昆虫腿部运动学、步态模式和移动稳定性的相对作用。为此,我们对不同颗粒介质斜坡和蚂蚁进行了析因操纵实验。我们的结果表明,蚂蚁在颗粒介质和固体介质上的运动相似,而在颗粒倾斜斜坡上,我们观察到稳定性丧失,随后步态模式从三脚架式转变为顺序式。这意味着,仅沙子的离散性质或粗糙度都不足以解释蚂蚁在沙坡上的挣扎:沙子性质和斜坡之间的相互作用才是关键。我们定义了一个异常指数,它能让我们量化昆虫攀爬颗粒斜坡时的移动困难。该指数出现的概率揭示了由于蚂蚁腿部施加的压力导致颗粒介质局部滑动的情况。我们的研究结果可以推广到其他给昆虫带来移动困难的模型,比如猪笼草瓮的光滑内壁。小型节肢动物在颗粒状和脆性材料上行走时如何解决它们独特的稳定性权衡问题,将需要在颗粒层面深入理解从腿部到基质的能量传递。