Suppr超能文献

功能代谢组学和化学蛋白质组学方法揭示了癌症治疗的新代谢靶标。

Functional Metabolomics and Chemoproteomics Approaches Reveal Novel Metabolic Targets for Anticancer Therapy.

机构信息

Pharmacy Department, Shenzhen Luohu People's Hospital, Shenzhen, China.

School of Pharmacy, China Pharmaceutical University, Nanjing, China.

出版信息

Adv Exp Med Biol. 2021;1280:131-147. doi: 10.1007/978-3-030-51652-9_9.

Abstract

Cancer cells exhibit different metabolic patterns compared to their normal counterparts. Although the reprogrammed metabolism has been indicated as strong biomarkers of cancer initiation and progression, increasing evidences suggest that metabolic alteration tuned by oncogenic drivers contributes to the occurrence and development of cancers rather than just being a hallmark of cancer. With this notion, targeting cancer metabolism holds promise as a novel anticancer strategy and is embracing its renaissance during the past two decades. Herein we have summarized the most recent developments in omics technology, including both metabolomics and proteomics, and how the combined use of these analytical tools significantly impacts this field by comprehensively and systematically recording the metabolic changes in cancer and hence reveals potential therapeutic targets that function by modulating the disrupted metabolic pathways.

摘要

与正常细胞相比,癌细胞表现出不同的代谢模式。虽然重编程的代谢已被认为是癌症发生和发展的强有力的生物标志物,但越来越多的证据表明,致癌驱动因素调节的代谢改变有助于癌症的发生和发展,而不仅仅是癌症的标志。有鉴于此,针对癌症代谢的治疗方法有望成为一种新的抗癌策略,并在过去二十年中迎来了复兴。本文总结了组学技术(包括代谢组学和蛋白质组学)的最新进展,以及这些分析工具的联合使用如何通过全面系统地记录癌症中的代谢变化来显著影响这一领域,从而揭示通过调节失调的代谢途径起作用的潜在治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验