Abbas Naseem, Rubab Nida, Kim Ki-Hyun, Chaudhry Rabbania, Manzoor Suryyia, Raza Nadeem, Tariq Muhammad, Lee Jechan, Manzoor Shamaila
Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
Department of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan.
J Colloid Interface Sci. 2021 Jul 15;594:902-913. doi: 10.1016/j.jcis.2021.03.094. Epub 2021 Mar 19.
Here, a novel bismuth-doped nickel-cobalt ferrite (NiCoBiFeO) was synthesized using a sol-gel auto-combustion approach. The impact of bismuth substitution on the nickel-cobalt ferrite structural characteristics was investigated relative to the nickel-cobalt ferrite without bismuth substitution (NiCoFeO) based on diverse technical options (e.g., scanning electron microscopy-equipped with an energy dispersive X-ray spectrometer, X-ray diffraction, physisorption, and Fourier-transform infrared spectroscopy). Bismuth doping increased the surface area without affecting pore size. The X-ray diffraction pattern confirmed a nano-ferrite cubic spinel structure of the catalyst. Photodegradation of Congo red (CR) was tested using these nickel-cobalt ferrite catalysts under visible light across varying reaction parameters (e.g., pH, catalyst loading, dye concentration, and reaction time). The photo-degradation efficiency for CR in aqueous medium was the highest (98%) at pH 3 with 0.2 g catalyst loading in 100 mL under visible irradiation to reinforce the role of nanostructures as a potent photocatalyst (QY = 2.79 × 10 molecule photon). The kinetic reaction rate of Bi-doped spinel ferrite (3.5 µmol g h) was1.25 times higher than those undoped materials. This study experimentally proved that the bismuth-doped nickel-cobalt ferrite photocatalyst is an effective option for removing industrial dyes.
在此,采用溶胶-凝胶自燃烧法合成了一种新型铋掺杂镍钴铁氧体(NiCoBiFeO)。基于多种技术手段(如配备能量色散X射线光谱仪的扫描电子显微镜、X射线衍射、物理吸附和傅里叶变换红外光谱),研究了铋取代对镍钴铁氧体结构特征的影响,并与未掺杂铋的镍钴铁氧体(NiCoFeO)进行了对比。铋掺杂增加了表面积,但不影响孔径。X射线衍射图谱证实了该催化剂具有纳米铁氧体立方尖晶石结构。使用这些镍钴铁氧体催化剂在可见光下,针对不同反应参数(如pH值、催化剂负载量、染料浓度和反应时间)对刚果红(CR)进行了光降解测试。在可见光照射下,于pH值为3、催化剂负载量为0.2 g、100 mL水溶液的条件下,CR在水介质中的光降解效率最高(98%),这进一步强化了纳米结构作为高效光催化剂的作用(量子产率=2.79×10分子/光子)。铋掺杂尖晶石铁氧体的动力学反应速率(3.5 µmol g h)比未掺杂材料高1.25倍。本研究通过实验证明,铋掺杂镍钴铁氧体光催化剂是去除工业染料的有效选择。