Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece.
Light Microscopy Unit, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece.
Sci Rep. 2021 Apr 1;11(1):7391. doi: 10.1038/s41598-021-86622-3.
Plants produce toxic secondary metabolites as defense mechanisms against phytopathogenic microorganisms and predators. L-azetidine-2-carboxylic acid (AZC), a toxic proline analogue produced by members of the Liliaceae and Agavaciae families, is part of such a mechanism. AZC causes a broad range of toxic, inflammatory and degenerative abnormalities in human and animal cells, while it is known that some microorganisms have evolved specialized strategies for AZC resistance. However, the mechanisms underlying these processes are poorly understood. Here, we identify a widespread mechanism for AZC resistance in fungi. We show that the filamentous ascomycete Aspergillus nidulans is able to not only resist AZC toxicity but also utilize it as a nitrogen source via GABA catabolism and the action of the AzhA hydrolase, a member of a large superfamily of detoxifying enzymes, the haloacid dehalogenase-like hydrolase (HAD) superfamily. This detoxification process is further assisted by the NgnA acetyltransferase, orthologue of Mpr1 of Saccharomyces cerevisiae. We additionally show that heterologous expression of AzhA protein can complement the AZC sensitivity of S. cerevisiae. Furthermore, a detailed phylogenetic analysis of AzhA homologues in Fungi, Archaea and Bacteria is provided. Overall, our results unravel a widespread mechanism for AZC resistance among microorganisms, including important human and plant pathogens.
植物会产生有毒的次生代谢物作为抵御植物病原微生物和捕食者的防御机制。L-氮丙啶-2-羧酸(AZC)是百合科和龙舌兰科成员产生的一种有毒脯氨酸类似物,是这种机制的一部分。AZC 会导致人类和动物细胞产生广泛的毒性、炎症和退行性异常,而一些微生物已经进化出了专门的 AZC 抗性策略。然而,这些过程的机制还了解甚少。在这里,我们确定了一种在真菌中广泛存在的 AZC 抗性机制。我们表明,丝状子囊菌 Aspergillus nidulans 不仅能够抵抗 AZC 的毒性,还能够通过 GABA 分解代谢和 AzhA 水解酶的作用将其用作氮源,AzhA 水解酶是一个大型解毒酶超家族的成员,即卤代酸脱卤酶样水解酶(HAD)超家族。这个解毒过程进一步得到了 NgnA 乙酰转移酶的辅助,它是酿酒酵母 Mpr1 的同源物。我们还表明,AzhA 蛋白的异源表达可以弥补酿酒酵母对 AZC 的敏感性。此外,还提供了真菌、古菌和细菌中 AzhA 同源物的详细系统发育分析。总的来说,我们的研究结果揭示了微生物中广泛存在的 AZC 抗性机制,包括重要的人类和植物病原体。