Suppr超能文献

发现神经回路中的有效连接性:基于机器学习方法的分析

Discovering Effective Connectivity in Neural Circuits: Analysis Based on Machine Learning Methodology.

作者信息

Pozo-Jimenez Pedro, Lucas-Romero Javier, Lopez-Garcia Jose A

机构信息

Department of Systems Biology, University of Alcalá, Madrid, Spain.

出版信息

Front Neuroinform. 2021 Mar 16;15:561012. doi: 10.3389/fninf.2021.561012. eCollection 2021.

Abstract

As multielectrode array technology increases in popularity, accessible analytical tools become necessary. Simultaneous recordings from multiple neurons may produce huge amounts of information. Traditional tools based on classical statistics are either insufficient to analyze multiple spike trains or sophisticated and expensive in computing terms. In this communication, we put to the test the idea that AI algorithms may be useful to gather information about the effective connectivity of neurons in local nuclei at a relatively low computing cost. To this end, we decided to explore the capacity of the algorithm C5.0 to retrieve information from a large series of spike trains obtained from a simulated neuronal circuit with a known structure. Combinatory, iterative and recursive processes using C5.0 were built to examine possibilities of increasing the performance of a direct application of the algorithm. Furthermore, we tested the applicability of these processes to a reduced dataset obtained from original biological recordings with unknown connectivity. This was obtained in house from a mouse preparation of the spinal cord. Results show that this algorithm can retrieve neurons monosynaptically connected to the target in simulated datasets within a single run. Iterative and recursive processes can identify monosynaptic neurons and disynaptic neurons under favorable conditions. Application of these processes to the biological dataset gives clues to identify neurons monosynaptically connected to the target. We conclude that the work presented provides substantial proof of concept for the potential use of AI algorithms to the study of effective connectivity.

摘要

随着多电极阵列技术越来越受欢迎,便捷的分析工具变得必不可少。同时记录多个神经元可能会产生大量信息。基于经典统计学的传统工具要么不足以分析多个脉冲序列,要么在计算方面复杂且昂贵。在本通讯中,我们对人工智能算法可能有助于以相对较低的计算成本收集有关局部核中神经元有效连接性信息的想法进行了测试。为此,我们决定探索C5.0算法从具有已知结构的模拟神经元回路获得的大量脉冲序列中检索信息的能力。构建了使用C5.0的组合、迭代和递归过程,以研究提高该算法直接应用性能的可能性。此外,我们测试了这些过程对从具有未知连接性的原始生物记录中获得的简化数据集的适用性。这是在内部从一只小鼠的脊髓制备中获得的。结果表明,该算法可以在单次运行中检索模拟数据集中与目标单突触连接的神经元。迭代和递归过程可以在有利条件下识别单突触神经元和双突触神经元。将这些过程应用于生物数据集为识别与目标单突触连接的神经元提供了线索。我们得出结论,所展示的工作为人工智能算法在有效连接性研究中的潜在应用提供了实质性的概念证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1753/8007904/118b5ec319bb/fninf-15-561012-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验