Martín Juan F, Liras Paloma, Sánchez Sergio
Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico.
Front Microbiol. 2021 Mar 16;12:630694. doi: 10.3389/fmicb.2021.630694. eCollection 2021.
Different types of post-translational modifications are present in bacteria that play essential roles in bacterial metabolism modulation. Nevertheless, limited information is available on these types of modifications in actinobacteria, particularly on their effects on secondary metabolite biosynthesis. Recently, phosphorylation, acetylation, or phosphopantetheneylation of transcriptional factors and key enzymes involved in secondary metabolite biosynthesis have been reported. There are two types of phosphorylations involved in the control of transcriptional factors: (1) phosphorylation of sensor kinases and transfer of the phosphate group to the receiver domain of response regulators, which alters the expression of regulator target genes. (2) Phosphorylation systems involving promiscuous serine/threonine/tyrosine kinases that modify proteins at several amino acid residues, e.g., the phosphorylation of the global nitrogen regulator GlnR. Another post-translational modification is the acetylation at the epsilon amino group of lysine residues. The protein acetylation/deacetylation controls the activity of many short and long-chain acyl-CoA synthetases, transcriptional factors, key proteins of bacterial metabolism, and enzymes for the biosynthesis of non-ribosomal peptides, desferrioxamine, streptomycin, or phosphinic acid-derived antibiotics. Acetyltransferases catalyze acetylation reactions showing different specificity for the acyl-CoA donor. Although it functions as acetyltransferase, there are examples of malonylation, crotonylation, succinylation, or in a few cases acylation activities using bulky acyl-CoA derivatives. Substrates activation by nucleoside triphosphates is one of the central reactions inhibited by lysine acetyltransferases. Phosphorylation/dephosphorylation or acylation/deacylation reactions on global regulators like PhoP, GlnR, AfsR, and the carbon catabolite regulator glucokinase strongly affects the expression of genes controlled by these regulators. Finally, a different type of post-translational protein modification is the phosphopantetheinylation, catalized by phosphopantetheinyl transferases (PPTases). This reaction is essential to modify those enzymes requiring phosphopantetheine groups like non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. Up to five PPTases are present in and . Different PPTases modify substrate proteins in the PCP or ACP domains of tacrolimus biosynthetic enzymes. Directed mutations of genes encoding enzymes involved in the post-translational modification is a promising tool to enhance the production of bioactive metabolites.
细菌中存在不同类型的翻译后修饰,这些修饰在细菌代谢调节中发挥着重要作用。然而,关于放线菌中这些修饰类型的信息有限,尤其是它们对次级代谢产物生物合成的影响。最近,已报道了参与次级代谢产物生物合成的转录因子和关键酶的磷酸化、乙酰化或磷酸泛酰巯基乙胺化。在转录因子的控制中涉及两种类型的磷酸化:(1)传感激酶的磷酸化以及磷酸基团向响应调节因子接收结构域的转移,这会改变调节因子靶基因的表达。(2)涉及混杂的丝氨酸/苏氨酸/酪氨酸激酶的磷酸化系统,这些激酶在多个氨基酸残基处修饰蛋白质,例如全局氮调节因子GlnR的磷酸化。另一种翻译后修饰是赖氨酸残基的ε氨基上的乙酰化。蛋白质的乙酰化/去乙酰化控制着许多短链和长链酰基辅酶A合成酶、转录因子、细菌代谢的关键蛋白质以及非核糖体肽、去铁胺、链霉素或次膦酸衍生抗生素生物合成酶的活性。乙酰转移酶催化乙酰化反应,对酰基辅酶A供体表现出不同的特异性。尽管它作为乙酰转移酶起作用,但也有丙二酰化、巴豆酰化、琥珀酰化的例子,或者在少数情况下使用庞大的酰基辅酶A衍生物的酰化活性。由三磷酸核苷激活底物是赖氨酸乙酰转移酶抑制的核心反应之一。对PhoP、GlnR、AfsR等全局调节因子以及碳分解代谢调节因子葡萄糖激酶的磷酸化/去磷酸化或酰化/去酰化反应强烈影响这些调节因子控制的基因的表达。最后,一种不同类型的翻译后蛋白质修饰是磷酸泛酰巯基乙胺化,由磷酸泛酰巯基乙胺转移酶(PPTases)催化。该反应对于修饰那些需要磷酸泛酰巯基乙胺基团的酶至关重要,如非核糖体肽合成酶、聚酮合酶和脂肪酸合成酶。在[具体物种名称]中存在多达五种PPTases。不同的PPTases修饰他克莫司生物合成酶的PCP或ACP结构域中的底物蛋白。对参与翻译后修饰的酶进行定向突变是提高生物活性代谢产物产量的一种有前途的工具。