Tsang Jean-Marc, Gritton Howard J, Das Shoshana L, Weber Timothy D, Chen Christopher S, Han Xue, Mertz Jerome
Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
Biomed Opt Express. 2021 Feb 9;12(3):1339-1350. doi: 10.1364/BOE.417286. eCollection 2021 Mar 1.
The inherent constraints on resolution, speed and field of view have hindered the development of high-speed, three-dimensional microscopy techniques over large scales. Here, we present a multiplane line-scan imaging strategy, which uses a series of axially distributed reflecting slits to probe different depths within a sample volume. Our technique enables the simultaneous imaging of an optically sectioned image stack with a single camera at frame rates of hundreds of hertz, without the need for axial scanning. We demonstrate the applicability of our system to monitor fast dynamics in biological samples by performing calcium imaging of neuronal activity in mouse brains and voltage imaging of cardiomyocytes in cardiac samples.
分辨率、速度和视野方面的固有限制阻碍了大尺度高速三维显微镜技术的发展。在此,我们提出一种多平面线扫描成像策略,该策略使用一系列轴向分布的反射狭缝来探测样品体积内的不同深度。我们的技术能够用单个相机以数百赫兹的帧率同时对光学切片图像堆栈进行成像,而无需轴向扫描。我们通过对小鼠大脑中的神经元活动进行钙成像以及对心脏样本中的心肌细胞进行电压成像,证明了我们的系统在监测生物样本快速动态方面的适用性。