Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Nat Methods. 2019 Oct;16(10):1054-1062. doi: 10.1038/s41592-019-0579-4. Epub 2019 Sep 27.
The limited per-pixel bandwidth of most microscopy methods requires compromises between field of view, sampling density and imaging speed. This limitation constrains studies involving complex motion or fast cellular signaling, and presents a major bottleneck for high-throughput structural imaging. Here, we combine high-speed intensified camera technology with a versatile, reconfigurable and dramatically improved Swept, Confocally Aligned Planar Excitation (SCAPE) microscope design that can achieve high-resolution volumetric imaging at over 300 volumes per second and over 1.2 GHz pixel rates. We demonstrate near-isotropic sampling in freely moving Caenorhabditis elegans, and analyze real-time blood flow and calcium dynamics in the beating zebrafish heart. The same system also permits high-throughput structural imaging of mounted, intact, cleared and expanded samples. SCAPE 2.0's significantly lower photodamage compared to point-scanning techniques is also confirmed. Our results demonstrate that SCAPE 2.0 is a powerful, yet accessible imaging platform for myriad emerging high-speed dynamic and high-throughput volumetric microscopy applications.
大多数显微镜方法的每个像素带宽有限,这就需要在视野、采样密度和成像速度之间进行权衡。这种限制限制了涉及复杂运动或快速细胞信号转导的研究,并成为高通量结构成像的主要瓶颈。在这里,我们将高速增强相机技术与多功能、可重构和显著改进的扫频共聚焦面激发(SCAPE)显微镜设计相结合,该设计可以以每秒超过 300 个体积和超过 1.2GHz 像素速率实现高分辨率体积成像。我们在自由移动的秀丽隐杆线虫中展示了近各向同性采样,并分析了跳动的斑马鱼心脏中的实时血流和钙动力学。相同的系统还允许对安装、完整、清除和扩展的样本进行高通量结构成像。与点扫描技术相比,SCAPE 2.0 的光损伤明显更低,这一点也得到了证实。我们的结果表明,SCAPE 2.0 是一种功能强大但易于使用的成像平台,适用于众多新兴的高速动态和高通量体积显微镜应用。