Suppr超能文献

OCT-GAN:从人视神经乳头的光学相干断层扫描图像中一步去除阴影和噪声

OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head.

作者信息

Cheong Haris, Krishna Devalla Sripad, Chuangsuwanich Thanadet, Tun Tin A, Wang Xiaofei, Aung Tin, Schmetterer Leopold, Buist Martin L, Boote Craig, Thiéry Alexandre H, Girard Michaël J A

机构信息

Ophthalmic Engineering and Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.

Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.

出版信息

Biomed Opt Express. 2021 Feb 19;12(3):1482-1498. doi: 10.1364/BOE.412156. eCollection 2021 Mar 1.

Abstract

Speckle noise and retinal shadows within OCT B-scans occlude important edges, fine textures and deep tissues, preventing accurate and robust diagnosis by algorithms and clinicians. We developed a single process that successfully removed both noise and retinal shadows from unseen single-frame B-scans within 10.4ms. Mean average gradient magnitude (AGM) for the proposed algorithm was 57.2% higher than current state-of-the-art, while mean peak signal to noise ratio (PSNR), contrast to noise ratio (CNR), and structural similarity index metric (SSIM) increased by 11.1%, 154% and 187% respectively compared to single-frame B-scans. Mean intralayer contrast (ILC) improvement for the retinal nerve fiber layer (RNFL), photoreceptor layer (PR) and retinal pigment epithelium (RPE) layers decreased from 0.362 ± 0.133 to 0.142 ± 0.102, 0.449 ± 0.116 to 0.0904 ± 0.0769, 0.381 ± 0.100 to 0.0590 ± 0.0451 respectively. The proposed algorithm reduces the necessity for long image acquisition times, minimizes expensive hardware requirements and reduces motion artifacts in OCT images.

摘要

光学相干断层扫描(OCT)B 扫描中的斑点噪声和视网膜阴影会遮挡重要边缘、精细纹理和深层组织,阻碍算法和临床医生进行准确可靠的诊断。我们开发了一个单一流程,能够在 10.4 毫秒内成功从未经处理的单帧 B 扫描中去除噪声和视网膜阴影。所提算法的平均梯度幅值(AGM)比当前最先进技术高 57.2%,而与单帧 B 扫描相比,平均峰值信噪比(PSNR)、对比度噪声比(CNR)和结构相似性指数测量值(SSIM)分别提高了 11.1%、154%和 187%。视网膜神经纤维层(RNFL)、光感受器层(PR)和视网膜色素上皮(RPE)层的平均层内对比度(ILC)改善分别从 0.362±0.133 降至 0.142±0.102、从 0.449±0.116 降至 0.0904±0.0769、从 0.381±0.100 降至 0.0590±0.0451。所提算法减少了长时间图像采集的必要性,将昂贵的硬件需求降至最低,并减少了 OCT 图像中的运动伪影。

相似文献

1
OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head.
Biomed Opt Express. 2021 Feb 19;12(3):1482-1498. doi: 10.1364/BOE.412156. eCollection 2021 Mar 1.
2
DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images.
Transl Vis Sci Technol. 2020 Apr 15;9(2):23. doi: 10.1167/tvst.9.2.23. eCollection 2020 Apr.
3
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.
Sci Rep. 2019 Oct 8;9(1):14454. doi: 10.1038/s41598-019-51062-7.
4
Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
Ophthalmology. 2008 Jun;115(6):1071-1078.e7. doi: 10.1016/j.ophtha.2007.09.001. Epub 2007 Dec 3.
6
Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography.
Ophthalmology. 2011 Dec;118(12):2414-26. doi: 10.1016/j.ophtha.2011.06.015. Epub 2011 Sep 15.
8
Minimising retinal vessel artefacts in optical coherence tomography images.
Comput Methods Programs Biomed. 2011 Nov;104(2):206-11. doi: 10.1016/j.cmpb.2011.08.005. Epub 2011 Sep 25.
9
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Ophthalmology. 2005 Oct;112(10):1734-46. doi: 10.1016/j.ophtha.2005.05.023.

引用本文的文献

1
Ophthalmic Image Synthesis and Analysis with Generative Adversarial Network Artificial Intelligence.
J Imaging Inform Med. 2025 May 20. doi: 10.1007/s10278-025-01519-1.
2
Using Optical Coherence Tomography in Plant Biology Research: Review and Prospects.
Sensors (Basel). 2025 Apr 14;25(8):2467. doi: 10.3390/s25082467.
3
Complex conjugate removal in optical coherence tomography using phase aware generative adversarial network.
J Biomed Opt. 2025 Feb;30(2):026001. doi: 10.1117/1.JBO.30.2.026001. Epub 2025 Feb 17.
5
Ultrasound-induced reorientation for multi-angle optical coherence tomography.
Nat Commun. 2024 Mar 16;15(1):2391. doi: 10.1038/s41467-024-46506-2.
6
TIE-GANs: single-shot quantitative phase imaging using transport of intensity equation with integration of GANs.
J Biomed Opt. 2024 Jan;29(1):016010. doi: 10.1117/1.JBO.29.1.016010. Epub 2024 Jan 30.
7
Mixed multiscale BM4D for three-dimensional optical coherence tomography denoising.
Comput Biol Med. 2023 Mar;155:106658. doi: 10.1016/j.compbiomed.2023.106658. Epub 2023 Feb 13.
8
GPU-accelerated image registration algorithm in ophthalmic optical coherence tomography.
Biomed Opt Express. 2022 Dec 15;14(1):194-207. doi: 10.1364/BOE.479343. eCollection 2023 Jan 1.
9
Self-supervised speckle noise reduction of optical coherence tomography without clean data.
Biomed Opt Express. 2022 Nov 10;13(12):6357-6372. doi: 10.1364/BOE.471497. eCollection 2022 Dec 1.
10
A review of generative adversarial network applications in optical coherence tomography image analysis.
J Optom. 2022;15 Suppl 1(Suppl 1):S1-S11. doi: 10.1016/j.optom.2022.09.004. Epub 2022 Oct 12.

本文引用的文献

1
DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images.
Transl Vis Sci Technol. 2020 Apr 15;9(2):23. doi: 10.1167/tvst.9.2.23. eCollection 2020 Apr.
2
Texture preservation and speckle reduction in poor optical coherence tomography using the convolutional neural network.
Med Image Anal. 2020 Aug;64:101727. doi: 10.1016/j.media.2020.101727. Epub 2020 May 23.
3
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.
Sci Rep. 2019 Oct 8;9(1):14454. doi: 10.1038/s41598-019-51062-7.
4
DeSpecNet: a CNN-based method for speckle reduction in retinal optical coherence tomography images.
Phys Med Biol. 2019 Sep 4;64(17):175010. doi: 10.1088/1361-6560/ab3556.
5
Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN.
Biomed Opt Express. 2018 Oct 2;9(11):5129-5146. doi: 10.1364/BOE.9.005129. eCollection 2018 Nov 1.
6
Quantitative shadow compensated optical coherence tomography of choroidal vasculature.
Sci Rep. 2018 Apr 24;8(1):6461. doi: 10.1038/s41598-018-24577-8.
7
A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):203-211. doi: 10.1167/iovs.17-22953.
8
Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid.
Biomed Opt Express. 2016 Feb 19;7(3):911-42. doi: 10.1364/BOE.7.000911. eCollection 2016 Mar 1.
10
Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects.
PLoS One. 2014 Dec 22;9(12):e114935. doi: 10.1371/journal.pone.0114935. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验