Suppr超能文献

使用相位感知生成对抗网络在光学相干断层扫描中去除复共轭

Complex conjugate removal in optical coherence tomography using phase aware generative adversarial network.

作者信息

Bellemo Valentina, Haindl Richard, Pramanik Manojit, Liu Linbo, Schmetterer Leopold, Liu Xinyu

机构信息

Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, Singapore, Singapore.

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.

出版信息

J Biomed Opt. 2025 Feb;30(2):026001. doi: 10.1117/1.JBO.30.2.026001. Epub 2025 Feb 17.

Abstract

SIGNIFICANCE

Current methods for complex conjugate removal (CCR) in frequency-domain optical coherence tomography (FD-OCT) often require additional hardware components, which increase system complexity and cost. A software-based solution would provide a more efficient and cost-effective alternative.

AIM

We aim to develop a deep learning approach to effectively remove complex conjugate artifacts (CCAs) from OCT scans without the need for extra hardware components.

APPROACH

We introduce a deep learning method that employs generative adversarial networks to eliminate CCAs from OCT scans. Our model leverages both conventional intensity images and phase images from the OCT scans to enhance the artifact removal process.

RESULTS

Our CCR-generative adversarial network models successfully converted conventional OCT scans with CCAs into artifact-free scans across various samples, including phantoms, human skin, and mouse eyes imaged with a phase-stable swept source-OCT prototype. The inclusion of phase images significantly improved the performance of the deep learning models in removing CCAs.

CONCLUSIONS

Our method provides a low-cost, data-driven, and software-based solution to enhance FD-OCT imaging capabilities by the removal of CCAs.

摘要

意义

频域光学相干断层扫描(FD - OCT)中当前用于去除复共轭(CCR)的方法通常需要额外的硬件组件,这会增加系统复杂性和成本。基于软件的解决方案将提供一种更高效且具成本效益的替代方案。

目的

我们旨在开发一种深度学习方法,以有效去除OCT扫描中的复共轭伪像(CCA),而无需额外的硬件组件。

方法

我们引入一种深度学习方法,该方法采用生成对抗网络从OCT扫描中消除CCA。我们的模型利用OCT扫描中的传统强度图像和相位图像来增强伪像去除过程。

结果

我们的CCR生成对抗网络模型成功地将带有CCA的传统OCT扫描转换为无伪像扫描,涵盖各种样本,包括使用相位稳定扫频源 - OCT原型成像的体模、人体皮肤和小鼠眼睛。包含相位图像显著提高了深度学习模型去除CCA的性能。

结论

我们的方法提供了一种低成本、数据驱动且基于软件的解决方案,通过去除CCA来增强FD - OCT成像能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/11831228/ea3ea1bc7a6e/JBO-030-026001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验