Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Renalytix AI Plc, Cardiff, UK.
Diabetologia. 2021 Jul;64(7):1504-1515. doi: 10.1007/s00125-021-05444-0. Epub 2021 Apr 2.
Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers.
This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years.
In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min [1.73 m], the urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On cross-validation in derivation (n = 686), KidneyIntelX had an AUC of 0.77 (95% CI 0.74, 0.79). In validation (n = 460), the AUC was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and 0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO categorisation (p < 0.001). Only 10% of those scored as low risk by KidneyIntelX experienced progression (i.e., NPV of 90%). The NRI for the high-risk group was 41% (p < 0.05).
KidneyIntelX improved prediction of kidney outcomes over KDIGO and clinical models in individuals with early stages of DKD.
预测糖尿病肾病(DKD)的进展对于改善预后至关重要。我们旨在开发/验证一种基于机器学习的、结合电子健康记录(EHR)和生物标志物的预后风险评分(KidneyIntelX™)。
这是一项观察性队列研究,纳入了来自两个 EHR 相关生物库的患有现患 DKD/储存血浆的患者。训练了一个随机森林模型,并比较了该模型与临床模型和肾脏病预后质量倡议(KDIGO)分类在预测 5 年内 eGFR 下降≥5 ml/min/1.73m2、持续下降≥40%或肾衰竭的复合终点方面的表现(AUC、阳性和阴性预测值[PPV/NPV]和净重新分类指数[NRI])。
在 1146 名患者中,中位年龄为 63 岁,51%为女性,基线 eGFR 为 54 ml/min[1.73m],尿白蛋白与肌酐比值(uACR)为 6.9mg/mmol,随访时间为 4.3 年,21%发生了复合终点事件。在推导中的交叉验证(n=686)中,KidneyIntelX 的 AUC 为 0.77(95%CI 0.74,0.79)。在验证中(n=460),AUC 为 0.77(95%CI 0.76,0.79)。相比之下,临床模型的 AUC 在推导中为 0.62(95%CI 0.61,0.63),在验证中为 0.61(95%CI 0.60,0.63)。使用推导中的截断值,KidneyIntelX 将验证队列的 46%、37%和 17%分别分层为低、中、高危组,用于复合肾脏终点。在高危组中,肾功能进行性下降的阳性预测值(PPV)为 61%,而 KDIGO 分类的最高风险分层为 40%(p<0.001)。仅有 10%的低危组患者发生进展(即,KidneyIntelX 的阴性预测值为 90%)。高危组的 NRI 为 41%(p<0.05)。
在患有早期 DKD 的个体中,KidneyIntelX 改善了 KDIGO 和临床模型对肾脏结局的预测。