Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
RenalytixAI, New York, New York.
Kidney360. 2020 Jun 30;1(8):731-739. doi: 10.34067/KID.0002252020. eCollection 2020 Aug 27.
Individuals with type 2 diabetes (T2D) or the apolipoprotein L1 high-risk (-HR) genotypes are at increased risk of rapid kidney function decline (RKFD) and kidney failure. We hypothesized that a prognostic test using machine learning integrating blood biomarkers and longitudinal electronic health record (EHR) data would improve risk stratification.
We selected two cohorts from the Mount Sinai Bio Biobank: T2D (=871) and African ancestry with -HR (=498). We measured plasma tumor necrosis factor receptors (TNFR) 1 and 2 and kidney injury molecule-1 (KIM-1) and used random forest algorithms to integrate biomarker and EHR data to generate a risk score for a composite outcome: RKFD (eGFR decline of ≥5 ml/min per year), or 40% sustained eGFR decline, or kidney failure. We compared performance to a validated clinical model and applied thresholds to assess the utility of the prognostic test (KidneyIntelX) to accurately stratify patients into risk categories.
Overall, 23% of those with T2D and 18% of those with -HR experienced the composite kidney end point over a median follow-up of 4.6 and 5.9 years, respectively. The area under the receiver operator characteristic curve (AUC) of KidneyIntelX was 0.77 (95% CI, 0.75 to 0.79) in T2D, and 0.80 (95% CI, 0.77 to 0.83) in -HR, outperforming the clinical models (AUC, 0.66 [95% CI, 0.65 to 0.67] and 0.72 [95% CI, 0.71 to 0.73], respectively; <0.001). The positive predictive values for KidneyIntelX were 62% and 62% versus 46% and 39% for the clinical models (<0.01) in high-risk (top 15%) stratum for T2D and -HR, respectively. The negative predictive values for KidneyIntelX were 92% in T2D and 96% for -HR versus 85% and 93% for the clinical model, respectively (=0.76 and 0.93, respectively), in low-risk stratum (bottom 50%).
In patients with T2D or -HR, a prognostic test (KidneyIntelX) integrating biomarker levels with longitudinal EHR data significantly improved prediction of a composite kidney end point of RKFD, 40% decline in eGFR, or kidney failure over validated clinical models.
2 型糖尿病(T2D)或载脂蛋白 L1 高危(-HR)基因型个体发生肾功能快速下降(RKFD)和肾衰竭的风险增加。我们假设,使用机器学习整合血液生物标志物和纵向电子健康记录(EHR)数据的预后测试将改善风险分层。
我们从西奈山生物生物库中选择了两个队列:T2D(=871)和非洲裔- HR(=498)。我们测量了血浆肿瘤坏死因子受体(TNFR)1 和 2 以及肾脏损伤分子-1(KIM-1),并使用随机森林算法整合生物标志物和 EHR 数据,生成一个复合结局的风险评分:RKFD(eGFR 每年下降≥5 ml/min),或 eGFR 持续下降 40%,或肾衰竭。我们将表现与经过验证的临床模型进行了比较,并应用了阈值来评估预后测试(KidneyIntelX)的实用性,以准确地将患者分层到风险类别中。
总体而言,在中位随访 4.6 年和 5.9 年后,分别有 23%的 T2D 患者和 18%的- HR 患者发生了复合肾脏终点事件。KidneyIntelX 的受试者工作特征曲线下面积(AUC)在 T2D 中为 0.77(95%CI,0.75 至 0.79),在- HR 中为 0.80(95%CI,0.77 至 0.83),优于临床模型(AUC,0.66[95%CI,0.65 至 0.67]和 0.72[95%CI,0.71 至 0.73];<0.001)。在 T2D 和- HR 的高危(前 15%)分层中,KidneyIntelX 的阳性预测值分别为 62%和 62%,而临床模型分别为 46%和 39%(<0.01)。在 T2D 中,KidneyIntelX 的阴性预测值为 92%,在- HR 中为 96%,而临床模型分别为 85%和 93%(=0.76 和 0.93),在低危(底层 50%)分层中。
在 T2D 或- HR 患者中,整合生物标志物水平与纵向 EHR 数据的预后测试(KidneyIntelX)显著改善了 RKFD、eGFR 下降 40%或肾衰竭的复合肾脏终点事件的预测,优于经过验证的临床模型。