Suppr超能文献

基于机器学习的预后测试(KidneyIntelX)的初步验证,该测试整合了生物标志物和电子健康记录数据,以预测纵向肾脏结局。

Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes.

机构信息

Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.

RenalytixAI, New York, New York.

出版信息

Kidney360. 2020 Jun 30;1(8):731-739. doi: 10.34067/KID.0002252020. eCollection 2020 Aug 27.

Abstract

BACKGROUND

Individuals with type 2 diabetes (T2D) or the apolipoprotein L1 high-risk (-HR) genotypes are at increased risk of rapid kidney function decline (RKFD) and kidney failure. We hypothesized that a prognostic test using machine learning integrating blood biomarkers and longitudinal electronic health record (EHR) data would improve risk stratification.

METHODS

We selected two cohorts from the Mount Sinai Bio Biobank: T2D (=871) and African ancestry with -HR (=498). We measured plasma tumor necrosis factor receptors (TNFR) 1 and 2 and kidney injury molecule-1 (KIM-1) and used random forest algorithms to integrate biomarker and EHR data to generate a risk score for a composite outcome: RKFD (eGFR decline of ≥5 ml/min per year), or 40% sustained eGFR decline, or kidney failure. We compared performance to a validated clinical model and applied thresholds to assess the utility of the prognostic test (KidneyIntelX) to accurately stratify patients into risk categories.

RESULTS

Overall, 23% of those with T2D and 18% of those with -HR experienced the composite kidney end point over a median follow-up of 4.6 and 5.9 years, respectively. The area under the receiver operator characteristic curve (AUC) of KidneyIntelX was 0.77 (95% CI, 0.75 to 0.79) in T2D, and 0.80 (95% CI, 0.77 to 0.83) in -HR, outperforming the clinical models (AUC, 0.66 [95% CI, 0.65 to 0.67] and 0.72 [95% CI, 0.71 to 0.73], respectively; <0.001). The positive predictive values for KidneyIntelX were 62% and 62% versus 46% and 39% for the clinical models (<0.01) in high-risk (top 15%) stratum for T2D and -HR, respectively. The negative predictive values for KidneyIntelX were 92% in T2D and 96% for -HR versus 85% and 93% for the clinical model, respectively (=0.76 and 0.93, respectively), in low-risk stratum (bottom 50%).

CONCLUSIONS

In patients with T2D or -HR, a prognostic test (KidneyIntelX) integrating biomarker levels with longitudinal EHR data significantly improved prediction of a composite kidney end point of RKFD, 40% decline in eGFR, or kidney failure over validated clinical models.

摘要

背景

2 型糖尿病(T2D)或载脂蛋白 L1 高危(-HR)基因型个体发生肾功能快速下降(RKFD)和肾衰竭的风险增加。我们假设,使用机器学习整合血液生物标志物和纵向电子健康记录(EHR)数据的预后测试将改善风险分层。

方法

我们从西奈山生物生物库中选择了两个队列:T2D(=871)和非洲裔- HR(=498)。我们测量了血浆肿瘤坏死因子受体(TNFR)1 和 2 以及肾脏损伤分子-1(KIM-1),并使用随机森林算法整合生物标志物和 EHR 数据,生成一个复合结局的风险评分:RKFD(eGFR 每年下降≥5 ml/min),或 eGFR 持续下降 40%,或肾衰竭。我们将表现与经过验证的临床模型进行了比较,并应用了阈值来评估预后测试(KidneyIntelX)的实用性,以准确地将患者分层到风险类别中。

结果

总体而言,在中位随访 4.6 年和 5.9 年后,分别有 23%的 T2D 患者和 18%的- HR 患者发生了复合肾脏终点事件。KidneyIntelX 的受试者工作特征曲线下面积(AUC)在 T2D 中为 0.77(95%CI,0.75 至 0.79),在- HR 中为 0.80(95%CI,0.77 至 0.83),优于临床模型(AUC,0.66[95%CI,0.65 至 0.67]和 0.72[95%CI,0.71 至 0.73];<0.001)。在 T2D 和- HR 的高危(前 15%)分层中,KidneyIntelX 的阳性预测值分别为 62%和 62%,而临床模型分别为 46%和 39%(<0.01)。在 T2D 中,KidneyIntelX 的阴性预测值为 92%,在- HR 中为 96%,而临床模型分别为 85%和 93%(=0.76 和 0.93),在低危(底层 50%)分层中。

结论

在 T2D 或- HR 患者中,整合生物标志物水平与纵向 EHR 数据的预后测试(KidneyIntelX)显著改善了 RKFD、eGFR 下降 40%或肾衰竭的复合肾脏终点事件的预测,优于经过验证的临床模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fba/8815746/2d5ce40399cc/KID.0002252020absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验