Suppr超能文献

一种具有双重分类辅助的门控循环网络用于烟雾语义分割。

A Gated Recurrent Network With Dual Classification Assistance for Smoke Semantic Segmentation.

作者信息

Yuan Feiniu, Zhang Lin, Xia Xue, Huang Qinghua, Li Xuelong

出版信息

IEEE Trans Image Process. 2021;30:4409-4422. doi: 10.1109/TIP.2021.3069318. Epub 2021 Apr 21.

Abstract

Smoke has semi-transparency property leading to highly complicated mixture of background and smoke. Sparse or small smoke is visually inconspicuous, and its boundary is often ambiguous. These reasons result in a very challenging task of separating smoke from a single image. To solve these problems, we propose a Classification-assisted Gated Recurrent Network (CGRNet) for smoke semantic segmentation. To discriminate smoke and smoke-like objects, we present a smoke segmentation strategy with dual classification assistance. Our classification module outputs two prediction probabilities for smoke. The first assistance is to use one probability to explicitly regulate the segmentation module for accuracy improvement by supervising a cross-entropy classification loss. The second one is to multiply the segmentation result by another probability for further refinement. This dual classification assistance greatly improves performance at image level. In the segmentation module, we design an Attention Convolutional GRU module (Att-ConvGRU) to learn the long-range context dependence of features. To perceive small or inconspicuous smoke, we design a Multi-scale Context Contrasted Local Feature structure (MCCL) and a Dense Pyramid Pooling Module (DPPM) for improving the representation ability of our network. Extensive experiments validate that our method significantly outperforms existing state-of-art algorithms on smoke datasets, and also obtain satisfactory results on challenging images with inconspicuous smoke and smoke-like objects.

摘要

烟雾具有半透明特性,导致背景与烟雾的混合极其复杂。稀疏或细小的烟雾在视觉上并不明显,其边界也常常模糊不清。这些原因使得从单张图像中分离烟雾成为一项极具挑战性的任务。为了解决这些问题,我们提出了一种用于烟雾语义分割的分类辅助门控循环网络(CGRNet)。为了区分烟雾和类似烟雾的物体,我们提出了一种具有双重分类辅助的烟雾分割策略。我们的分类模块输出两个烟雾预测概率。第一种辅助是使用一个概率通过监督交叉熵分类损失来明确调节分割模块以提高准确性。第二种辅助是将分割结果乘以另一个概率以进一步优化。这种双重分类辅助在图像层面极大地提高了性能。在分割模块中,我们设计了一个注意力卷积门控循环单元模块(Att-ConvGRU)来学习特征的长距离上下文依赖性。为了感知细小或不明显的烟雾,我们设计了一个多尺度上下文对比局部特征结构(MCCL)和一个密集金字塔池化模块(DPPM)来提高我们网络的表示能力。大量实验验证了我们的方法在烟雾数据集上显著优于现有的先进算法,并且在含有不明显烟雾和类似烟雾物体的具有挑战性的图像上也取得了令人满意的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验