Suppr超能文献

一种用于皮肤病变分割与分类的协作学习模型。

A Collaborative Learning Model for Skin Lesion Segmentation and Classification.

作者信息

Wang Ying, Su Jie, Xu Qiuyu, Zhong Yixin

机构信息

School of Information Science and Engineering, University of Jinan, Jinan 250022, China.

Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.

出版信息

Diagnostics (Basel). 2023 Feb 28;13(5):912. doi: 10.3390/diagnostics13050912.

Abstract

The automatic segmentation and classification of skin lesions are two essential tasks in computer-aided skin cancer diagnosis. Segmentation aims to detect the location and boundary of the skin lesion area, while classification is used to evaluate the type of skin lesion. The location and contour information of lesions provided by segmentation is essential for the classification of skin lesions, while the skin disease classification helps generate target localization maps to assist the segmentation task. Although the segmentation and classification are studied independently in most cases, we find meaningful information can be explored using the correlation of dermatological segmentation and classification tasks, especially when the sample data are insufficient. In this paper, we propose a collaborative learning deep convolutional neural networks (CL-DCNN) model based on the teacher-student learning method for dermatological segmentation and classification. To generate high-quality pseudo-labels, we provide a self-training method. The segmentation network is selectively retrained through classification network screening pseudo-labels. Specially, we obtain high-quality pseudo-labels for the segmentation network by providing a reliability measure method. We also employ class activation maps to improve the location ability of the segmentation network. Furthermore, we provide the lesion contour information by using the lesion segmentation masks to improve the recognition ability of the classification network. Experiments are carried on the ISIC 2017 and ISIC Archive datasets. The CL-DCNN model achieved a Jaccard of 79.1% on the skin lesion segmentation task and an average AUC of 93.7% on the skin disease classification task, which is superior to the advanced skin lesion segmentation methods and classification methods.

摘要

皮肤病变的自动分割和分类是计算机辅助皮肤癌诊断中的两项重要任务。分割旨在检测皮肤病变区域的位置和边界,而分类则用于评估皮肤病变的类型。分割提供的病变位置和轮廓信息对于皮肤病变的分类至关重要,而皮肤疾病分类有助于生成目标定位图以辅助分割任务。尽管在大多数情况下分割和分类是独立研究的,但我们发现利用皮肤病分割和分类任务的相关性可以探索有意义的信息,特别是当样本数据不足时。在本文中,我们提出了一种基于师生学习方法的协同学习深度卷积神经网络(CL-DCNN)模型用于皮肤病分割和分类。为了生成高质量的伪标签,我们提供了一种自训练方法。分割网络通过分类网络筛选伪标签进行选择性再训练。特别地,我们通过提供一种可靠性度量方法为分割网络获得高质量的伪标签。我们还采用类激活映射来提高分割网络的定位能力。此外,我们利用病变分割掩码提供病变轮廓信息以提高分类网络的识别能力。在ISIC 2017和ISIC Archive数据集上进行了实验。CL-DCNN模型在皮肤病变分割任务上的Jaccard指数达到79.1%,在皮肤疾病分类任务上的平均AUC为93.7%,优于先进的皮肤病变分割方法和分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a005/10001355/3a4fdcffbc6a/diagnostics-13-00912-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验