Thuyloi University, Hanoi, Vietnam.
University of Transport Technology, Hanoi, Vietnam.
PLoS One. 2021 Apr 2;16(4):e0247391. doi: 10.1371/journal.pone.0247391. eCollection 2021.
In this paper, an extensive simulation program is conducted to find out the optimal ANN model to predict the shear strength of fiber-reinforced polymer (FRP) concrete beams containing both flexural and shear reinforcements. For acquiring this purpose, an experimental database containing 125 samples is collected from the literature and used to find the best architecture of ANN. In this database, the input variables consist of 9 inputs, such as the ratio of the beam width, the effective depth, the shear span to the effective depth, the compressive strength of concrete, the longitudinal FRP reinforcement ratio, the modulus of elasticity of longitudinal FRP reinforcement, the FRP shear reinforcement ratio, the tensile strength of FRP shear reinforcement, the modulus of elasticity of FRP shear reinforcement. Thereafter, the selection of the appropriate architecture of ANN model is performed and evaluated by common statistical measurements. The results show that the optimal ANN model is a highly efficient predictor of the shear strength of FRP concrete beams with a maximum R2 value of 0.9634 on the training part and an R2 of 0.9577 on the testing part, using the best architecture. In addition, a sensitivity analysis using the optimal ANN model over 500 Monte Carlo simulations is performed to interpret the influence of reinforcement type on the stability and accuracy of ANN model in predicting shear strength. The results of this investigation could facilitate and enhance the use of ANN model in different real-world problems in the field of civil engineering.
本文通过广泛的仿真程序,找到了一种最优的人工神经网络(ANN)模型,用于预测含有弯曲和剪切增强的纤维增强聚合物(FRP)混凝土梁的剪切强度。为了达到这一目的,从文献中收集了一个包含 125 个样本的实验数据库,并用于寻找最佳的 ANN 架构。在这个数据库中,输入变量包括 9 个输入,如梁宽比、有效深度、剪跨比、混凝土抗压强度、纵向 FRP 配筋率、纵向 FRP 配筋弹性模量、FRP 剪切配筋率、FRP 剪切筋抗拉强度、FRP 剪切筋弹性模量。然后,通过常用的统计测量方法,对合适的 ANN 模型架构进行选择和评估。结果表明,最优的 ANN 模型是 FRP 混凝土梁剪切强度的高效预测器,在训练部分的最大 R2 值为 0.9634,在测试部分的 R2 值为 0.9577,采用了最佳架构。此外,还使用最优 ANN 模型进行了 500 次蒙特卡罗模拟的敏感性分析,以解释增强类型对 ANN 模型预测剪切强度的稳定性和准确性的影响。这项研究的结果可以促进和增强 ANN 模型在土木工程领域不同实际问题中的应用。