Suppr超能文献

基于机器学习算法的辅助胶凝材料改性混凝土中氯离子扩散系数预测

Prediction of Chloride Diffusion Coefficient in Concrete Modified with Supplementary Cementitious Materials Using Machine Learning Algorithms.

作者信息

Al Fuhaid Abdulrahman Fahad, Alanazi Hani

机构信息

Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), P.O. Box 380, Al-Ahsa 31982, Saudi Arabia.

Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia.

出版信息

Materials (Basel). 2023 Feb 2;16(3):1277. doi: 10.3390/ma16031277.

Abstract

The chloride diffusion coefficient (Dcl) is one of the most important characteristics of concrete durability. This study aimed to develop a prediction model for the Dcl of concrete incorporating supplemental cementitious material. The datasets of concrete containing supplemental cementitious materials (SCMs) such as tricalcium aluminate (CA), ground granulated blast furnace slag (GGBFS), and fly ash were used in developing the model. Five machine learning (ML) algorithms including adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), support vector machine (SVM), and extreme learning machine (ELM) were used in the model development. The performance of the developed models was tested using five evaluation metrics, namely, normalized reference index (RI), coefficient of determination (R), mean absolute error (MAE), and root mean square error (RMSE). The SVM models demonstrated the highest prediction accuracy with R values of 0.955 and 0.951 at the training and testing stage, respectively. The prediction accuracy of the machine learning (ML) algorithm was checked using the Taylor diagram and Boxplot, which confirmed that SVM is the best ML algorithm for estimating Dcl, thus, helpful in establishing reliable tools in concrete durability design.

摘要

氯离子扩散系数(Dcl)是混凝土耐久性最重要的特性之一。本研究旨在建立一个包含补充胶凝材料的混凝土Dcl预测模型。在建立模型时使用了含有补充胶凝材料(SCMs)的混凝土数据集,如铝酸三钙(CA)、粒化高炉矿渣(GGBFS)和粉煤灰。模型开发中使用了五种机器学习(ML)算法,包括自适应神经模糊推理系统(ANFIS)、人工神经网络(ANN)、支持向量机(SVM)和极限学习机(ELM)。使用五个评估指标对所开发模型的性能进行了测试,即归一化参考指数(RI)、决定系数(R)、平均绝对误差(MAE)和均方根误差(RMSE)。支持向量机模型在训练和测试阶段分别表现出最高的预测精度,R值分别为0.955和0.951。使用泰勒图和箱线图检查了机器学习(ML)算法的预测精度,结果证实支持向量机是估计Dcl的最佳ML算法,因此有助于在混凝土耐久性设计中建立可靠的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e165/9920323/91343847012c/materials-16-01277-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验