Univ. de Bordeaux, UFR des Sciences Odontologiques; Univ. de Bordeaux, PACEA, UMR 5199.
Univ de Strasbourg, UFR Odontologie; INSERM U1121; Reference Centre for Oral and Dental Rare Diseases, Strasbourg.
J Dent. 2021 Jun;109:103654. doi: 10.1016/j.jdent.2021.103654. Epub 2021 Mar 30.
A better understanding of the microstructure and mechanical properties of enamel and dentine may enable practitioners to apply the current adhesive dentistry protocols to clinical cases involving dentine disorders (dentinogenesis imperfecta or dentine dysplasia).
DATA/SOURCES: Publications (up to June 2020) investigating the microstructure of dentine disorders were browsed in a systematic search using the PubMed/Medline, Embase and Cochrane Library electronic databases. Two authors independently selected the studies, extracted the data in accordance with the PRISMA statement, and assessed the risk of bias with the Critical Appraisal Checklist. A Mann-Whitney U test was computed to compare tissues damage related to the two dentine disorders of interest.
From an initial total of 642 studies, only 37 (n = 164 teeth) were included in the present analysis, among which 18 investigating enamel (n = 70 teeth), 15 the dentine-enamel junction (n = 62 teeth), and 35 dentine (n = 156 teeth). Dentine is damaged in cases of dentinogenesis imperfecta and osteogenesis imperfecta (p = 2.55E-21 and p = 3.99E-21, respectively). These studies highlight a reduction in mineral density, hardness, modulus of elasticity and abnormal microstructure in dentine disorders. The majority of studies report an altered dentine-enamel junction in dentinogenesis imperfecta and in osteogenesis imperfecta (p = 6.26E-09 and p = 0.001, respectively). Interestingly, enamel is also affected in cases of dentinogenesis imperfecta (p = 0.0013), unlike to osteogenesis imperfecta (p = 0.056).
Taking into account all these observations, only a few clinical principles may be favoured in the case of adhesive cementation: (i) to preserve the residual enamel to enhance bonding, (ii) to sandblast the tooth surfaces to increase roughness, (iii) to choose a universal adhesive and reinforce enamel and dentine by means of infiltrant resins. As these recommendations are mostly based on in vitro studies, future in vivo studies should be conducted to confirm these hypotheses.
更好地了解牙釉质和牙本质的微观结构和力学性能,可以使临床医生将当前的黏结牙科方案应用于涉及牙本质疾病(牙本质发育不全或牙本质发育不良)的临床病例。
使用 PubMed/Medline、Embase 和 Cochrane Library 电子数据库进行系统检索,查阅了研究牙本质疾病微观结构的出版物(截至 2020 年 6 月)。两位作者独立选择研究,根据 PRISMA 声明提取数据,并使用关键评估清单评估偏倚风险。使用 Mann-Whitney U 检验比较了两种感兴趣的牙本质疾病相关的组织损伤。
从最初的 642 项研究中,只有 37 项(n=164 颗牙齿)被纳入本分析,其中 18 项研究牙釉质(n=70 颗牙齿),15 项研究牙本质-釉质交界处(n=62 颗牙齿),35 项研究牙本质(n=156 颗牙齿)。牙本质发育不全和成骨不全时牙本质受损(p=2.55E-21 和 p=3.99E-21)。这些研究强调了牙本质疾病中矿物质密度、硬度、弹性模量和异常微观结构的降低。大多数研究报告牙本质发育不全和成骨不全时牙本质-釉质交界处发生改变(p=6.26E-09 和 p=0.001)。有趣的是,牙釉质也受到牙本质发育不全的影响(p=0.0013),而不像成骨不全(p=0.056)。
考虑到所有这些观察结果,在黏结固位的情况下,只有少数临床原则可能受到青睐:(i)保留残余牙釉质以增强黏合,(ii)喷砂处理牙面以增加粗糙度,(iii)选择通用黏合剂,并通过渗透树脂增强牙釉质和牙本质。由于这些建议主要基于体外研究,因此应进行未来的体内研究来验证这些假设。