Suppr超能文献

美国阿片类药物使用相关流行预测的方法学研究进展:叙述性综述及跨学科行动呼吁

Methodological approaches for the prediction of opioid use-related epidemics in the United States: a narrative review and cross-disciplinary call to action.

机构信息

Interdisciplinary Research on Substance Use Joint Doctoral Program at San Diego State University and University of California, San Diego; Division of Infectious Diseases and Global Public Health, University of California, San Diego; School of Social Work, San Diego State University.

Division of Infectious Diseases and Global Public Health, University of California, San Diego; Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.

出版信息

Transl Res. 2021 Aug;234:88-113. doi: 10.1016/j.trsl.2021.03.018. Epub 2021 Mar 31.

Abstract

The opioid crisis in the United States has been defined by waves of drug- and locality-specific Opioid use-Related Epidemics (OREs) of overdose and bloodborne infections, among a range of health harms. The ability to identify localities at risk of such OREs, and better yet, to predict which ones will experience them, holds the potential to mitigate further morbidity and mortality. This narrative review was conducted to identify and describe quantitative approaches aimed at the "risk assessment," "detection" or "prediction" of OREs in the United States. We implemented a PubMed search composed of the: (1) objective (eg, prediction), (2) epidemiologic outcome (eg, outbreak), (3) underlying cause (ie, opioid use), (4) health outcome (eg, overdose, HIV), (5) location (ie, US). In total, 46 studies were included, and the following information extracted: discipline, objective, health outcome, drug/substance type, geographic region/unit of analysis, and data sources. Studies identified relied on clinical, epidemiological, behavioral and drug markets surveillance and applied a range of methods including statistical regression, geospatial analyses, dynamic modeling, phylogenetic analyses and machine learning. Studies for the prediction of overdose mortality at national/state/county and zip code level are rapidly emerging. Geospatial methods are increasingly used to identify hotspots of opioid use and overdose. In the context of infectious disease OREs, routine genetic sequencing of patient samples to identify growing transmission clusters via phylogenetic methods could increase early detection capacity. A coordinated implementation of multiple, complementary approaches would increase our ability to successfully anticipate outbreak risk and respond preemptively. We present a multi-disciplinary framework for the prediction of OREs in the US and reflect on challenges research teams will face in implementing such strategies along with good practices.

摘要

美国的阿片类药物危机的特点是一波又一波与药物和特定地点相关的阿片类药物使用相关流行(ORE),包括过量用药和血源性感染等一系列健康危害。能够识别有发生此类 ORE 风险的地点,更好的是,能够预测哪些地点会发生这些 ORE,这有可能减轻进一步的发病率和死亡率。本叙述性综述旨在确定和描述旨在对美国 ORE 进行“风险评估”、“检测”或“预测”的定量方法。我们实施了一项 PubMed 搜索,包括:(1)目标(例如,预测),(2)流行病学结果(例如,爆发),(3)潜在原因(即阿片类药物使用),(4)健康结果(例如,过量用药,艾滋病毒),(5)地点(即美国)。总共纳入了 46 项研究,并提取了以下信息:学科、目标、健康结果、药物/物质类型、地理区域/分析单位和数据来源。确定的研究依赖于临床、流行病学、行为和药物市场监测,并应用了一系列方法,包括统计回归、地理空间分析、动态建模、系统发育分析和机器学习。在国家/州/县和邮政编码层面预测过量死亡的研究正在迅速涌现。地理空间方法越来越多地用于识别阿片类药物使用和过量用药的热点地区。在传染病 ORE 方面,通过系统发育方法对患者样本进行常规基因测序以识别不断增长的传播群集,可以提高早期检测能力。协调实施多种互补方法将提高我们成功预测爆发风险并提前做出反应的能力。我们提出了一种用于预测美国 ORE 的多学科框架,并反思研究团队在实施这些策略时将面临的挑战以及良好实践。

相似文献

5
Opioid Discussion in the Twittersphere.社交媒体上的阿片类药物讨论。
Subst Use Misuse. 2018 Nov 10;53(13):2132-2139. doi: 10.1080/10826084.2018.1458319. Epub 2018 Apr 16.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验