Suppr超能文献

311 服务请求作为邻里困境和阿片类药物使用障碍的指标。

311 service requests as indicators of neighborhood distress and opioid use disorder.

机构信息

Department of Geography, The Ohio State University, Columbus, OH, USA.

Center for Urban and Regional Analysis, The Ohio State University, Columbus, OH, USA.

出版信息

Sci Rep. 2020 Nov 11;10(1):19579. doi: 10.1038/s41598-020-76685-z.

Abstract

Opioid use disorder and overdose deaths is a public health crisis in the United States, and there is increasing recognition that its etiology is rooted in part by social determinants such as poverty, isolation and social upheaval. Limiting research and policy interventions is the low temporal and spatial resolution of publicly available administrative data such as census data. We explore the use of municipal service requests (also known as "311" requests) as high resolution spatial and temporal indicators of neighborhood social distress and opioid misuse. We analyze the spatial associations between georeferenced opioid overdose event (OOE) data from emergency medical service responders and 311 service request data from the City of Columbus, OH, USA for the time period 2008-2017. We find 10 out of 21 types of 311 requests spatially associate with OOEs and also characterize neighborhoods with lower socio-economic status in the city, both consistently over time. We also demonstrate that the 311 indicators are capable of predicting OOE hotspots at the neighborhood-level: our results show code violation, public health, and street lighting were the top three accurate predictors with predictive accuracy as 0.92, 0.89 and 0.83, respectively. Since 311 requests are publicly available with high spatial and temporal resolution, they can be effective as opioid overdose surveillance indicators for basic research and applied policy.

摘要

在美国,阿片类药物使用障碍和过量死亡是一场公共卫生危机,越来越多的人认识到,其病因部分源于贫困、孤立和社会动荡等社会决定因素。限制研究和政策干预的是人口普查数据等公共行政数据的时间和空间分辨率低。我们探索利用城市服务请求(也称为“311”请求)作为邻里社会困境和阿片类药物滥用的高分辨率时空指标。我们分析了美国俄亥俄州哥伦布市的地理参考阿片类药物过量事件(OOE)数据与 2008 年至 2017 年期间的 311 服务请求数据之间的空间关联。我们发现,在 21 种 311 请求中有 10 种与 OOE 具有空间关联,并且还描绘了城市中社会经济地位较低的邻里,这两种情况在时间上都保持一致。我们还证明,311 指标能够预测邻里层面的 OOE 热点:我们的结果表明,违规行为、公共卫生和街灯是三个最准确的预测指标,预测准确率分别为 0.92、0.89 和 0.83。由于 311 请求具有高空间和时间分辨率,因此它们可以作为基本研究和应用政策的阿片类药物过量监测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8a/7658248/ce77885cec6b/41598_2020_76685_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验