Università di Napoli Federico II, Dipartimento di Fisica "Ettore Pancini", I-80126 Napoli, Italy; INFN Sezione di Napoli, I-80126 Napoli, Italy.
Università di Napoli Federico II, Dipartimento di Fisica "Ettore Pancini", I-80126 Napoli, Italy; INFN Sezione di Napoli, I-80126 Napoli, Italy.
Phys Med. 2021 Mar;83:184-193. doi: 10.1016/j.ejmp.2021.03.021. Epub 2021 Mar 31.
To develop a computerized detection system for the automatic classification of the presence/absence of mass lesions in digital breast tomosynthesis (DBT) annotated exams, based on a deep convolutional neural network (DCNN).
Three DCNN architectures working at image-level (DBT slice) were compared: two state-of-the-art pre-trained DCNN architectures (AlexNet and VGG19) customized through transfer learning, and one developed from scratch (DBT-DCNN). To evaluate these DCNN-based architectures we analysed their classification performance on two different datasets provided by two hospital radiology departments.DBT slice images were processed following normalization, background correction and data augmentation procedures. The accuracy, sensitivity, and area-under-the-curve (AUC) values were evaluated on both datasets, using receiver operating characteristic curves. A Grad-CAM technique was also implemented providing anindication of the lesion position in the DBT slice.
Accuracy, sensitivity and AUC for the investigated DCNN are in-line with the best performance reported in the field. The DBT-DCNN network developed in this work showed an accuracy and a sensitivity of (90% ± 4%) and (96% ± 3%), respectively, with an AUC as good as 0.89 ± 0.04. Ak-fold cross validation test (withk = 4) showed an accuracy of 94.0% ± 0.2%, and a F1-score test provided a value as good as 0.93 ± 0.03. Grad-CAM maps show high activation in correspondence of pixels within the tumour regions.
We developed a deep learning-based framework (DBT-DCNN) to classify DBT images from clinical exams. We investigated also apossible application of the Grad-CAM technique to identify the lesion position.
基于深度卷积神经网络(DCNN),开发一种用于自动分类数字乳腺断层合成(DBT)注释检查中肿块病变存在/缺失的计算机检测系统。
比较了三种在图像级(DBT 切片)工作的 DCNN 架构:两个经过迁移学习定制的最先进的预训练 DCNN 架构(AlexNet 和 VGG19),以及一个从头开始开发的(DBT-DCNN)。为了评估这些基于 DCNN 的架构,我们分析了它们在两个不同数据集上的分类性能,这两个数据集分别来自两个医院放射科。DBT 切片图像经过归一化、背景校正和数据增强处理。使用接收器操作特征曲线在两个数据集上评估了准确性、敏感度和曲线下面积(AUC)值。还实施了 Grad-CAM 技术,为 DBT 切片中的病变位置提供指示。
在所研究的 DCNN 中,准确性、敏感度和 AUC 与该领域报告的最佳性能一致。在这项工作中开发的 DBT-DCNN 网络的准确率和敏感度分别为(90%±4%)和(96%±3%),AUC 高达 0.89±0.04。k 折交叉验证测试(k=4)的准确率为 94.0%±0.2%,F1 分数测试的准确率高达 0.93±0.03。Grad-CAM 图显示在肿瘤区域的像素对应处有高激活。
我们开发了一种基于深度学习的框架(DBT-DCNN)来分类临床检查中的 DBT 图像。我们还研究了 Grad-CAM 技术在识别病变位置方面的可能应用。